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Abstract: The influence of hydrogen on the fracture toughness and fatigue crack propagation rate of
two structural steel grades, with and without vanadium, was evaluated by means of tests performed
on thermally precharged samples in a hydrogen reactor at 195 bar and 450 ◦C for 21 h. The degra-
dation of the mechanical properties was directly correlated with the interaction between hydrogen
atoms and the steel microstructure. A LECO DH603 hydrogen analyzer was used to study the
activation energies of the different microstructural trapping sites, and also to study the hydrogen
eggresion kinetics at room temperature. The electrochemical hydrogen permeation technique was
employed to estimate the apparent hydrogen diffusion coefficient. Under the mentioned hydrogen
precharging conditions, a very high hydrogen concentration was introduced within the V-added
steel (4.3 ppm). The V-added grade had stronger trapping sites and much lower apparent diffusion
coefficient. Hydrogen embrittlement susceptibility increased significantly due to the presence of
internal hydrogen in the V-free steel in comparison with tests carried out in the uncharged condition.
However, the V-added steel grade (+0.31%V) was less sensitive to hydrogen embrittlement. This fact
was ascribed to the positive effect of the precipitated nanometric (Mo,V)C to alleviate hydrogen em-
brittlement. Mixed nanometric (Mo,V)C might be considered to be nondiffusible hydrogen-trapping
sites, in view of their strong hydrogen-trapping capability (~35 kJ/mol). Hence, mechanical behavior
of the V-added grade in the presence of internal hydrogen was notably improved.

Keywords: TDA analysis; electrochemical hydrogen permeation; fracture toughness; fatigue crack
growth rate; nanometric (Mo,V)C

1. Introduction

For contributing to the development of the impending new green economy society
based on the use of CO2-free alternative energy sources, the world’s energy industries
must be decarbonized [1]. In this respect, hydrogen energy is postulated as an attractive
alternative for an immediate future, in which the world’s population is expected to grow
to 10 billion people by the year 2050 [2]. Hence, it is important to contribute to the
development of structural steels for the manufacture of vessels and pipelines able to store
and transport hydrogen at high working pressures, up to 70 or even 100 MPa, in order to
accommodate the imminent increase in energy demand.

It is well known that hydrogen atoms can penetrate and diffuse within the steel mi-
crostructure, deteriorating the steel’s mechanical properties under hydrogen environments.
In this respect, different authors have reported a notable decrease in tensile strength
and ductility due to the effects of hydrogen [3–6]. Hydrogen embrittlement suscep-
tibility increases with the strength level, and also is highly dependent on the applied
displacement rate.
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The influence of hydrogen on the fracture toughness has not gone unnoticed by
the scientific community [7–10]. In this same context, Ogawa et al. [11] analyzed the
effect of hydrogen gas under the pressures of 0.7 and 115 MPa on a low-carbon steel
(σy = 360 MPa). They reported a strong decrease in JIC, from ~350 kJ/m2 in air to ~75 kJ/m2

under 115 MPa of pressure. However, hydrogen’s effect was slight at 0.7 MPa. On the other
hand, Colombo et al. [12] studied the effects of internal hydrogen in electrochemically
precharged AISI4130 steel samples (σy = 715 MPa). They also reported a strong decrease in
JIC, from 215.5 kJ/m2 in air to 22 kJ/m2 in the presence of internal hydrogen.

Several authors have also reported the influence of hydrogen on the fatigue crack
growth rate [13–15]. The effect of hydrogen on the fatigue crack growth performance of a
pure iron steel was investigated by T. Shinko et al. [16]. Tests were directly conducted on
hydrogen gas, under a pressure of 35 MPa and at different test frequencies. Two different
propagation regimes were identified. The first one, at low ∆K values, was characterized by
a moderated fatigue crack growth enhancement, whilst for ∆K > 14 MPa·m0.5, hydrogen
gas caused an acceleration factor in the crack growth rate approximately 10–30 times higher
than in air. A. Álvaro et al. [17] studied the impact of hydrogen on the fatigue crack growth
rate of a X70 pipeline steel grade (σy = 485 MPa). In this study, fatigue tests were carried
out in situ using cathodically charged samples. The fatigue crack growth rate was notably
influenced by the test frequency. At the lowest test frequency (0.1 Hz), hydrogen induced
an increase in the crack growth rate of about 100 times compared to testing in air.

Therefore, vessels and pipelines used to store and transport hydrogen must be able to
provide a safe service for long periods of time, being essential to ensure good resistance to
the hydrogen embrittlement phenomenon. In this respect, quenched and tempered steels
alloyed with chromium, chromium–molybdenum, or chromium–molybdenum–vanadium
are often employed in these type of facilities [18]. However, hydrogen atoms, motivated by
the existing high hydrostatic stress in microcracks or notches, can diffuse toward a damage
process zone (Figure 1a), promoting hydrogen embrittlement when a critical hydrogen
concentration is reached [19].
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On the other hand, microstructural heterogeneities, also known as ‘hydrogen trapping
sites’, also play an important role in preventing hydrogen embrittlement. Therefore,
it is important to determine preferential hydrogen trapping sites [20–22]. Accordingly,
high energy traps, uniformly distributed within the steel microstructure, might notably
contribute to delaying hydrogen diffusion toward the aforementioned damage process
zone (Figure 1b) in order to improve mechanical performance in hydrogen environments.
For instance, the addition of carbide-forming elements (V, Ti, or Nb) was demonstrated to
be effective in relieving hydrogen embrittlement susceptibility [23–25].

A reversible or irreversible trapping character [20,26] is associated with the activation
energy of hydrogen atoms detrapping from the different microstructural singularities, and
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it will have an important impact on the mechanical behavior of the steel in fighting against
hydrogen embrittlement [27,28]

In this study, the influence of the vanadium addition (+0.31%) on the fracture tough-
ness and fatigue crack growth rate performance of samples thermally precharged with
hydrogen was evaluated. The influence of hydrogen on the mechanical properties’ deterio-
ration was directly correlated with the hydrogen–microstructure interaction.

2. Experimental Procedure
2.1. Materials, Heat Treatments, and Samples

Two different low-alloyed ferritic steels were selected in this study: with and without
vanadium. The chemical composition of the steels, in weight %, is shown in Table 1.

Table 1. Chemical composition of V-free and V-added steels (weight %).

Steel Grade C Mn Si Cr Mo Ni V

V-free 0.14 0.56 0.16 2.23 1.00 0.09 -

V-added 0.15 0.52 0.09 2.27 1.06 0.19 0.31

Regarding the applied heat treatments, the V-free steel was austenitized at 940 ◦C for
3 h, then it was quenched in water (WQ) and tempered at 690 ◦C for 30 h. The V-added
steel was austenitized at 925 ◦C for 90 min, quenched in water, and tempered at 720 ◦C for
3 h. The sequence of heat treatments and the nomenclature of the obtained steel grades are
shown in Table 2.

Table 2. Applied heat treatments.

Specimen ID Heat Treatment Sequences

V-free 940 ◦C/3 h + WQ + 690 ◦C/30 h tempered + air cooling

V-added 925 ◦C/90 min + WQ + 720 ◦C/3 h tempered + air cooling

To study the interaction between hydrogen atoms and the steel microstructure, small
cylindrical samples (10 mm diameter) were employed to measure the introduced hydrogen
content and the kinetics of hydrogen departure at room temperature (RT). The same
geometry was employed to determine the binding energies of microstructural hydrogen
traps. Furthermore, the electrochemical hydrogen permeation technique was applied to
determine the apparent hydrogen diffusion coefficient. Samples with a 1 mm thickness
were used.

On the other hand, to study the influence of internal hydrogen on the mechanical prop-
erties, fracture toughness and fatigue crack growth rate characterization were determined
using compact test (CT) samples.

2.2. Hydrogen Precharging Methodology

All the samples were precharged with gaseous hydrogen in a high-pressure hydrogen
reactor that was manufactured in accordance with the ASTM G146 standard [29]. The
hydrogen precharging conditions are listed in Table 3.

Table 3. Hydrogen precharging conditions.

Pressure (MPa) Temperature (◦C) Time (h)

19.5 450 21

After the mentioned 21 h at 450 ◦C, a cooling phase of 1 h, until reaching a temperature
of 85 ◦C (keeping the hydrogen pressure at 19.5 MPa to limit hydrogen departure) was
always used for removing the samples from the hydrogen reactor. Consequently, to
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minimize the hydrogen losses, all the samples were conserved in liquid nitrogen at −196 ◦C
until testing.

2.3. Hydrogen Desorption at Room Temperature

The hydrogen egression kinetics at room temperature was determined. All the cylindrical
hydrogen-precharged pins (10 mm diameter and 20 mm length) were removed from the liquid
nitrogen simultaneously. Then, they were exposed to air at room temperature in different
time intervals, and finally samples were introduced in a LECO DH603 hydrogen analyzer in
order to measure the hydrogen concentration. The thermal analysis to determine hydrogen
concentration consisted of maintaining the samples at 1100 ◦C for 400 s [30].

2.4. Trap Binding Energies

In order to determine the activation energy (Ea) of hydrogen traps present in the
microstructure of the studied steel grades, hydrogen desorption profiles were carried out
in the hydrogen LECO DH603 analyzer under different heating rates: 3600, 2400, 1800 and
1200 ◦C/h [30].

2.5. Electrochemical Hydrogen Permeation Technique

Hydrogen absorption and diffusion were analyzed using an electrochemical double
cell, as previously described in [26]. A circular area of approximately 1 cm2 was exposed to
the solution, and the electrochemical tests were conducted at room temperature (±20 ◦C).
Hydrogen atoms were generated on the charging cell under a current density of 1 mA/cm2,
using a 2 mol/L H2SO4 + 0.25 g/L of As2O3 solution (pH = 1). The hydrogen exit side
contained 0.1 mol/L NaOH solution (pH = 12).

The apparent hydrogen diffusion coefficient (Dapp) and subsurface hydrogen concen-
tration at the entry side (Capp) were calculated following the standard [31].

2.6. Tensile Properties and Hardness

To determine the fundamental mechanical properties of the selected grades of steel,
tensile tests were performed in air (without hydrogen) on an Instron 5582 tensile testing
machine. Smooth specimens with a diameter of 5 mm and a calibrated length of 28 mm
were used [32]. A displacement rate of 0.4 mm/min was employed.

Brinell hardness (HB) was also calculated using a Hoytom hardness tester, using a
load of 187.5 kg and a ball 2.5 mm in diameter [33].

2.7. Fracture Toughness Tests

Fracture toughness characterization was performed using compact test (CT) specimens
with a 48 mm width and a 12 mm thickness. Fracture toughness tests were carried out
following the ASTM E1820 standard [34].

First of all, fracture toughness tests, without hydrogen, were carried out under a
nominal displacement rate of 1 mm/min. Then, hydrogen-precharged samples were
tested under two different displacement rates, 1 and 0.01 mm/min, in order to study the
impact of hydrogen on the fracture toughness. The fracture toughness initiation parameter
‘J0.2’ (kJ/m2) was used in this study. This parameter corresponded to the value of ‘J’ after a
crack growth of 0.2 mm offset from the blunting line.

2.8. Fatigue Crack Growth Tests

The fatigue crack growth rate also was determined using compact test (CT) samples,
with a width of 48 mm and a thickness of 10 mm, following the ASTM E647 standard [35].

In order to determine the fatigue crack growth behaviour of each steel grade without
internal hydrogen, uncharged samples were tested at room temperature under a load
ratio R = 0.1 and a frequency of 10 Hz. Consequently, fatigue crack growth tests were
carried out on hydrogen-precharged samples [36]. All the tests were conducted in air,
at room temperature, under a load ratio R = 0.1. Test frequencies of 10, 1, and 0.1 Hz
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were employed in order to evaluate the influence of this parameter on the fatigue crack
growth rate performance. Hence, the curves representing the fatigue crack growth rate
(da/dN) versus the stress intensity factor range (∆K) were obtained under the different
test conditions.

2.9. SEM and TEM Analysis

The microstructures were observed in a scanning electron microscope (SEM JEOL-
JSM5600) using an acceleration voltage of 20 kV. Initially, the samples were ground (up
to 1200 SiC paper), and then samples were polished with 6 and 1 µm diamond paste,
respectively. Finally, they were etched with Nital-2%.

On the other hand, TEM analysis was also performed on the V-free and V-added steel
grades. A JEOL JEM-2100F field-emission transmission electron microscope, operating at an
acceleration voltage of 200 kV, was employed. Sample preparation was as described in [26].

3. Results
3.1. Microstructures

The obtained microstructures of the V-free and V-added steels after the heat treatments
described in Table 2 are shown in Figure 2. Figure 2A,B reveal the tempered martensite
present on both grades of steel. The prior austenite grain size was around 25 µm.

The profuse precipitation of carbides, which took place during the tempering treatment,
can be clearly seen along the prior austenite grain boundaries, and also within the grain. In
this respect, Fe–Cr–Mo mixed carbides, such as M7C3, M2C, and M23C6, were identified in
the V-free steel grade by means of the TEM analysis, whilst mixed carbides of V and Mo with
a finer particle size were identified in the V-added steel (Figure 2—C1, C2 and C3).

3.2. Mechanical Properties

Tensile properties and Brinell hardness level, obtained as described in Section 2.6, are
summarized in Table 4.

3.3. Hydrogen Desorption at Room Temperature

Hydrogen concentration measured as a function of the exposure time of the cylindrical
samples at room temperature (RT) is shown in Table 5. Although more hydrogen (4.3 ppm)
was introduced into the V-added steel grade, the percentage of hydrogen that was able to
emerge from traps and diffuse out of the steel samples after 48–72 h was notably lower
(~5%). According to this, we postulated that the V-added steel grade presented more
hydrogen-trapping capability (i.e., high-energy trapping sites for hydrogen atoms).

3.4. Trap Binding Energies

As an example, Figure 3a shows the hydrogen thermal desorption profiles obtained in
the V-free steel grade under the different heating rates, from 1200 to 3600 ◦C/h. In order
to appreciate the effect of V-addition (+0.31%) on hydrogen trapping, Figure 3b displays
the hydrogen desorption profiles under a heating rate of 1800 ◦C/h for both steel grades.
In this respect, the hydrogen desorption profile was shifted to a higher temperature due
to the V-addition. As will be shown below, this phenomenon was associated with the
precipitated nanometric molybdenum–vanadium carbides, which seemed to act as strong
traps for hydrogen diffusion.

Lastly, Figure 3c gives the linear regressions applied to determine the detrapping
activation energies (Ea) related to the different peaks, which were identified both in the
V-free steel and in the V-added grade.

Based on the obtained results, two desorption peaks were identified for both steel grades.
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Table 4. Hardness and tensile properties. ‘σY’ is the yield strength, ‘σt’ is the ultimate tensile strength,
‘e’ represents the elongation, and HB is the Brinell hardness.

Sample ID σy (MPa) σt (MPa) e (%) HB

V-free 430 580 27 170

V-added 567 714 23 200
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Table 5. Hydrogen content evolution in ppm. HD: diffusible hydrogen after long exposure
time at RT calculated from Ht=0−Ht=72

Ht=0
. The hydrogen measurement corresponding to 0 h repre-

sents the initial hydrogen content that was introduced into the steels according to the hydrogen
precharging methodology.

Sample ID
Exposure Time (in Hours) at Room Temperature

% HD
0 24 48 72

V-free 0.6 0.2 0.2 0.2 67 (0.4 ppm)

V-added 4.3 4.2 4.1 4.1 5 (0.2 ppm)
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Regarding the V-free steel grade, the first peak showed an activation energy of
13 kJ/mol that was associated with hydrogen detrapping from (Cr,Mo) carbides [37]. Nev-
ertheless, the second desorption peak, the activation energy of which was 18 kJ/mol, was
attributed to the presence of lath and packet martensite interfaces [38,39]. Both trapping



Materials 2021, 14, 7269 8 of 17

sites were considered as reversible traps for hydrogen atoms. The trap activation energies
are summarized in Table 6.

Table 6. Trap activation energies.

Sample ID Position Peak −Ea/R (Slope in Figure 3c) Ea (kJ/mol) R2

V-free
1st 1578 13 0.95

2nd 2109 18 0.99

V-added
1st 1999 17 0.99

2nd 4244 35 0.96

On the other hand, due to the V-addition (+0.31%), the second peak was notably
shifted to a higher temperature (Figure 2B). According to this, the highest activation energy,
~35 kJ/mol, was obtained in the V-added grade. This energy was associated with hydrogen
detrapping from the aforementioned precipitated nanometric molybdenum–vanadium
carbides (10–30 nm, Figure 2C1), and agreed well with the previous works in [40–42].

This fact also contributed to reinforcing the results previously shown in Table 5. Here,
in the V-added grade, around 95% of the hydrogen remained strongly trapped in the steel
microstructure. This fact confirmed that nanometric molybdenum–vanadium carbides
(35 kJ/mol) could be considered, in this study, as irreversible trapping sites. These carbides
were previously identified in Figure 2C by means of the TEM analysis.

3.5. Electrochemical Hydrogen Permeation Technique

Figure 4 shows the hydrogen permeation curves obtained for both grades of steel:
with and without vanadium. The apparent permeability (Papp), the apparent hydrogen
concentration (Capp), and the apparent diffusion coefficient (Dapp) that were extracted from
the hydrogen permeation curves are presented in Table 7.
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Table 7. Results extracted from the electrochemical hydrogen permeation curves.

Sample ID * Papp (molH/m·s) Capp (ppm) Dapp (m2/s)

V-free 1.1 × 10−9 1.7 1.7 × 10−10

V-added 8.8 × 10−10 7.1 2.6 × 10−11

* Apparent permeability: Papp = Capp × Dapp.
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It is important to note that hydrogen diffusion kinetics were notably delayed due to
the vanadium addition (+0.31%). This fact was associated with the stronger trapping sites
previously identified in the V-added steel grade, (V,Mo)C.

3.6. Fracture Toughness Tests

The load-COD displacement curves and the fracture toughness crack growth (J-R)
curves, corresponding to the V-free and V-added steel grades, are respectively shown in
Figures 5 and 6. In the same figures, the effect of the internal hydrogen can be clearly
appreciated at the different displacement rates (1–0.01 mm/min) by comparing them with
the uncharged sample (1 mm/min).
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Using the results given in Figures 5 and 6, the fracture toughness initiation parameter
(J0.2) and the embrittlement indexes (EI) were determined, and are reported in Table 8. In
the same table, the fracture micromechanisms, observed in the SEM analysis, have been
also indicated by order of importance.

Table 8. Results of fracture toughness tests conducted on the uncharged and precharged samples.
‘EI’ represents the embrittlement index, calculated as: EI = [(J − JH)/J] × 100.

Sample ID Displacement Rate
(mm/min)

J0.2
(kJ/m2)

EI
(%)

* Fracture
Micromechanism

V-free
(σy = 430 MPa)

1 (uncharged) 904 - MVC

1 (H-precharged) 502 44.5 MVC + PRHIC

0.01 (H-precharged) 465 48.6 MVC + PRHIC

V-added
(σy = 567 MPa)

1 (uncharged) 672 - MVC

1 (H-precharged) 542 19.3 MVC

0.01 (H-precharged) 448 33.3 MVC
* MVC: microvoid coalescence; PRHIC: plasticity-related hydrogen-induced cracking [43].

Based on the obtained results, the internal hydrogen effect was notable in these grades
of steel. It is important to note that the effect of the internal hydrogen increased at the
lowest displacement rates (0.1 mm/min), and this effect was more notable in the V-free
steel grade, in which embrittlement indexes close to 50% were calculated. Accordingly, the
fracture mechanism was modified in the presence of internal hydrogen (Table 8). However,
in the V-added steel grade, microvoid coalescence (MVC) was the only micromechanism
identified on the fracture surfaces, even in the presence of internal hydrogen, and also for
the lowest displacement rates.

3.7. Fatigue Crack Growth Rate Tests

Figure 7 shows the fatigue crack growth curves obtained for the V-free and V-added
steel grades in the uncharged condition (R = 0.1 and 10 Hz). In the same figure, these
curves are compared with those determined for the hydrogen-precharged samples and
tested at the different frequencies (1 and 0.1 Hz).
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The acceleration effect on the fatigue crack growth rate, due to the internal hydrogen
effect, was only observed in the V-free steel grade. In this grade of steel, the hydrogen effect
was observed for the lowest test frequency (0.1 Hz), and it was especially marked at the
lowest ∆K values. According to this, at around ∆K = 30 MPa·m0.5 and for a test frequency
of 0.1 Hz, the fatigue crack growth rate was around 15 times quicker than that determined
in the uncharged sample. At 0.1 Hz, hydrogen diffusion was coupled with the crack growth
rate (based on its diffusion coefficient, 1.7 × 10−10 m2/s), and consequently, hydrogen
atoms diffused in and out of the process zone in every fatigue cycle, thereby enabling the
existence of the so-called embrittled process zone due to hydrogen accumulation (Figure 1).
This fact would explain the increase in the crack growth rate observed in the V-free grade.
Similar results were reported in [17,44–46]. Hydrogen’s impact on the fatigue crack growth
acceleration factor can be clearly appreciated in Figure 8 under the different applied test
frequencies, and also for the different ∆K values (30–50 MPa·m0.5).
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On the other hand, the internal hydrogen effect was totally negligible in the V-added
steel grade, even for the lowest applied test frequency (0.1 Hz, Figure 7). The microstructure
of this steel grade presented uniform dispersion of nanometric molybdenum–vanadium
carbides, which behaved as very strong hydrogen trapping sites, thereby greatly reducing
its diffusivity (Dapp = 2.6 × 10−11 m2/s and HD = 5%). Hence, local hydrogen concentration
in the notch tip region was not able to give rise to hydrogen embrittlement.

4. Discussion

In order to analyze the effect of the steel microstructure on the hydrogen embrittlement
phenomenon, Figure 9 shows a comparison of the apparent diffusion coefficient (Dapp) and
the activation energies (Ea) from the identified trapping sites in the studied steel grades,
with and without vanadium.

Due to the addition of vanadium (+0.31%), the apparent diffusion coefficient (Dapp) in
the V-added grade (2.6 × 10−11 m2/s) was around seven times lower than that estimated
in the V-free grade (1.7 × 10−10 m2/s). This behavior was directly associated with the
activation energy of the stronger trapping sites for hydrogen atoms identified in the
V-added steel grade ~35 kJ/mol (desorption from the molybdenum–vanadium mixed
nanometric carbides). However, weaker trapping sites were found in the V-free grade
(Figure 9). Activation energy for hydrogen detrapping from nanometric (Mo,V)C (in
the V-added grade) was well above the activation energy for detrapping from (Cr,Mo)C
previously identified in the V-free grade (~13 kJ/mol).
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Focusing now on the mechanical behavior in presence of internal hydrogen, the
embrittlement indexes (EIs) estimated in the V-added steel from the fracture toughness
tests were clearly lower than that calculated in the V-free grade, independently of the
applied displacement rate (Figure 10). Hydrogen–microstructure interaction (Figure 9)
explains this fact. As mentioned, the V-added grade showed a strong hydrogen-trapping
capability, which contributed to retarding hydrogen diffusion toward the notch tip region
(i.e., the process area). This fact is responsible for the mechanical behavior improvement
observed in the V-added grade in presence of internal hydrogen. Despite having absorbed
a high hydrogen concentration, around 4.3 ppm (Table 5), only 5% of such hydrogen was
able to diffuse (~0.2 ppm) within the steel microstructure to reach the process zone, and
this local concentration was barely able to trigger hydrogen embrittlement mechanisms
(HEDE/HELP). Accordingly, a fully ductile fracture micromechanism (Figure 11b) was
noticed in all the fracture toughness tests (even with hydrogen).
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Nevertheless, in the case of the V-free steel, with weaker trapping sites, diffusible
hydrogen (~67%, ~0.4 ppm) moved and accumulated in the process zone ahead of the
crack tip of the CT sample, giving rise to a change in the failure micromechanism, from
ductile (without hydrogen) to decohesion of packet and block martensite boundaries, the
plasticity-related hydrogen-induced cracking (PRHIC) micromechanism, in the presence of
internal hydrogen (Figure 11a).

The effect of the internal hydrogen on the fatigue performance of the V-free steel was
especially notable (Figure 12). For the lowest test frequency (0.1 Hz), hydrogen atoms had
more time to diffuse and attain the process zone, leading to embrittlement mechanisms
(PRHIC and intergranular fracture in Figure 13a). However, as ∆K increased, the hydrogen
effect seemed to diminish. In this case, the crack propagated faster than the hydrogen diffusion
rate toward the crack tip (i.e., the hydrogen accumulation decreased), and consequently, the
acceleration rate was alleviated. A similar effect was also reported in [12].
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0.1 Hz and R = 0.1: (a) V-free, PRHIC with IG fracture around ∆K = 35–40 MPa·m0.5; (b) V-added, showing ductile striations
(white circle).

On the other hand, due to the V-addition, the V-added steel grade performance in the
presence of internal hydrogen was greatly improved, and the effect of the test frequency
was totally negligible, even for the lowest test frequency (Figure 12). Ductile fatigue
striations (white circles in Figure 13b) were frequently observed in the V-added grade, both
in the precharged sample and the uncharged one.

Mixed molybdenum–vanadium nanometric carbides definitely acted as very strong
trapping sites for hydrogen atoms with an irreversible trapping character, and consequently,
the local hydrogen concentration in the notch tip region was barely able to trigger hydrogen
embrittlement due to V-addition.

It is important to recall that in the V-added grade, the fracture mechanism was always
ductile. It was characterized by the presence of MVC in the fracture toughness tests, even
with hydrogen, and by the presence of ductile fatigue striations in the fatigue tests, also in
the presence of internal hydrogen.

Finally, it is important to highlight that, although several authors have reported that
hydrogen embrittlement susceptibility increases as yield strength also increases [3–5,7]; in
our study, the V-added steel grade (σy = 567 MPa), with a higher yield strength than the
V-free grade (σy = 430 MPa), was less sensitive to the effects of hydrogen. Hence, we can
emphasize that depending on the trap morphology for hydrogen atoms, the steel strength
level and the total hydrogen content can be independent of the embrittlement level.

5. Conclusions

Based on the results from a wide experimental study, several conclusions were drawn:

• The V-added steel grade absorbed much hydrogen compared to the V-free steel, due
to the fact that mixed molybdenum–vanadium nanometric carbides are very strong
hydrogen trapping sites.

• Two hydrogen traps, with activation energies of 13 kJ/mol and 18 kJ/mol, were de-
tected in the V-free steel grade. Stronger trapping sites were identified in the V-added
grade (+0.31%), with an activation energy around 35 kJ/mol. This high activation
energy was attributed to the presence of mixed molybdenum–vanadium nanometric
carbides precipitated during the tempering treatment. Diffusible hydrogen and the
hydrogen apparent diffusion coefficient were much lower in the V-added grade.

• In the V-free steel grade, J0.2 notably decreased due to the effects of the internal hydro-
gen. Embrittlement indexes in the order of 50% were found. This embrittlement was
consistent with the change appreciated in the fracture micromechanisms: A PRHIC
mechanism was identified in some areas of the precharged samples, while MVC was
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the present mechanism in the uncharged ones. However, lower embrittlement indexes
(19–33%) were obtained in the V-added grade. Even with internal hydrogen, the
V-added steel grade did not modify the failure micromechanism with respect to that
observed on the uncharged samples (MVC).

• The fatigue crack propagation rate strongly increased in the V-free grade. Hydrogen
damage was especially notable at the lowest test frequency (0.1 Hz) and lowest ∆K
values. Here, the failure micromechanism changed from ductile fatigue striations
(uncharged samples) to PRHIC and intergranular fracture (precharged samples).
Nevertheless, the V-added grade did not show signs of hydrogen embrittlement, even
at the lowest test frequency. A ductile fatigue striation micromechanism was observed
in all the tested samples.

• The fracture toughness and fatigue behavior of the V-added steel grade in the presence
of internal hydrogen was greatly improved, as the microstructure of this steel grade
presented uniform dispersion of mixed molybdenum–vanadium nanometric carbides,
which behaved as very strong trapping sites for hydrogen atoms. Despite having
absorbed 4.3 ppm (versus 0.6 ppm absorbed in the V-free grade), most of the hydrogen
remained strongly trapped into the microstructure (~95%). This fact contributed to
limiting hydrogen accumulation in the crack-tip region, contributing to improved
mechanical performance in hydrogen environments.

• After this wide study, it is possible to affirm that hydrogen embrittlement does not
depend on the absorbed hydrogen concentration.

• The V-addition (+0.31%) demonstrates that the increase of the yield strength from
430 to 567 MPa did not increase the hydrogen embrittlement susceptibility. The type
of trap must be taken into consideration to analyze the deterioration of mechanical
properties in the presence of hydrogen.
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