34,359 research outputs found

    Quantum interference-induced stability of repulsively bound pairs of excitations

    Full text link
    We study the dynamics of two types of pairs of excitations which are bound despite their strong repulsive interaction. One corresponds to doubly occupied sites in one-dimensional Bose-Hubbard systems, the so-called doublons. The other is pairs of neighboring excited spins in anisotropic Heisenberg spin-1/2 chains. We investigate the possibility of decay of the bound pairs due to resonant scattering by a defect or due to collisions of the pairs. We find that the amplitudes of the corresponding transitions are very small. This is a result of destructive quantum interference and explains the stability of the bound pairs.Comment: 12 pages, 3 figure

    Revivals, classical periodicity, and zitterbewegung of electron currents in monolayer graphene

    Full text link
    Revivals of electric current in graphene in the presence of an external magnetic field are described. It is shown that when the electrons are prepared in the form of wave packets assuming a Gaussian population of only positive (or negative) energy Landau levels, the presence of the magnetic field induce revivals of the electron currents, besides the classical cyclotron motion. When the population comprises both positive and negative energy Landau levels, revivals of the electric current manifest simultaneously with zitterbewegung and the classical cyclotron motion. We relate the temporal scales of these three effects and discuss to what extent these results hold for real graphene samples

    Antiresonance and interaction-induced localization in spin and qubit chains with defects

    Full text link
    We study a spin chain with an anisotropic XXZ coupling in an external field. Such a chain models several proposed types of a quantum computer. The chain contains a defect with a different on-site energy. The interaction between excitations is shown to lead to two-excitation states localized next to the defect. In a resonant situation scattering of excitations on each other might cause decay of an excitation localized on the defect. We find that destructive quantum interference suppresses this decay. Numerical results confirm the analytical predictions.Comment: Updated versio

    Transforming triangulations on non planar-surfaces

    Get PDF
    We consider whether any two triangulations of a polygon or a point set on a non-planar surface with a given metric can be transformed into each other by a sequence of edge flips. The answer is negative in general with some remarkable exceptions, such as polygons on the cylinder, and on the flat torus, and certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM Journal on Discrete Mathematics. Keywords: Graph of triangulations, triangulations on surfaces, triangulations of polygons, edge fli

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Loading of a Bose-Einstein condensate in the boson-accumulation regime

    Full text link
    We study the optical loading of a trapped Bose-Einstein condensate by spontaneous emission of atoms in excited electronic state in the Boson-Accumulation Regime. We generalize the previous simplified analysis of ref. [Phys. Rev. A 53, 2466 (1996)], to a 3D case in which more than one trap level of the excited state trap is considered. By solving the corresponding quantum many-body master equation, we demonstrate that also for this general situation the photon reabsorption can help to increase the condensate fraction. Such effect could be employed to realize a continuous atom laser, and to overcome condensate losses.Comment: 7 pages, 5 eps figures, uses epl.st

    Many-particle confinement by constructed disorder and quantum computing

    Full text link
    Many-particle confinement (localization) is studied for a 1D system of spinless fermions with nearest-neighbor hopping and interaction, or equivalently, for an anisotropic Heisenberg spin-1/2 chain. This system is frequently used to model quantum computers with perpetually coupled qubits. We construct a bounded sequence of site energies that leads to strong single-particle confinement of all states on individual sites. We show that this sequence also leads to a confinement of all many-particle states in an infinite system for a time that scales as a high power of the reciprocal hopping integral. The confinement is achieved for strong interaction between the particles while keeping the overall bandwidth of site energies comparatively small. The results show viability of quantum computing with time-independent qubit coupling.Comment: An invited paper for the topical issue of J. Opt. B on quantum contro
    corecore