12,433 research outputs found

    The Gomi legacy

    Get PDF
    No description supplie

    Ephemeral active regions and coronal bright points: A solar maximum Mission 2 guest investigator study

    Get PDF
    A dominate association of coronal bright points (as seen in He wavelength 10830) was confirmed with the approach and subsequent disappearance of opposite polarity magnetic network. While coronal bright points do occur with ephemeral regions, this association is a factor of 2 to 4 less than with sites of disappearing magnetic flux. The intensity variations seen in He I wavelength 10830 are intermittent and often rapid, varying over the 3 minute time resolution of the data; their bright point counterparts in the C IV wavelength 1548 and 20 cm wavelength show similar, though not always coincident time variations. Ejecta are associated with about 1/3 of the dark points and are evident in the C IV and H alpha data. These results support the idea that the anti-correlation of X-ray bright points with the solar cycle can be explained by the correlation of these coronal emission structures with sites of cancelling flux, indicating that, in some cases, the process of magnetic flux removal results in the release of energy. That the intensity variations are rapid and variable suggests that this process works intermittently

    Entropy of Thermally Excited Black Rings

    Full text link
    A string theory description of near extremal black rings is proposed. The entropy is computed and the thermodynamic properties are derived for a large family of black rings that have not yet been constructed in supergravity. It is also argued that the most general black ring in N=8 supergravity has 21 parameters up to duality.Comment: 17 pages; v2: minor edits and refs adde

    Composition algebras and the two faces of G2G_{2}

    Get PDF
    We consider composition and division algebras over the real numbers: We note two r\^oles for the group G2G_{2}: as automorphism group of the octonions and as the isotropy group of a generic 3-form in 7 dimensions. We show why they are equivalent, by means of a regular metric. We express in some diagrams the relation between some pertinent groups, most of them related to the octonions. Some applications to physics are also discussed.Comment: 11 pages, 3 figure

    Peculiar properties of the cluster-cluster interaction induced by the Pauli exclusion principle

    Full text link
    Role of the Pauli principle in the formation of both the discrete spectrum and multi-channel states of the binary nuclear systems composed of clusters is studied in the Algebraic Version of the resonating-group method. Solutions of the Hill-Wheeler equations in the discrete representation of a complete basis of the Pauli-allowed states are discussed for 4He+n, 3H+3H, and 4He+4He binary systems. An exact treatment of the antisymmetrization effects are shown to result in either an effective repulsion of the clusters, or their effective attraction. It also yields a change in the intensity of the centrifugal potential. Both factors significantly affect the scattering phase behavior. Special attention is paid to the multi-channel cluster structure 6He+6He as well as to the difficulties arising in the case when the two clustering configurations, 6He+6He and 4He+8He, are taken into account simultaneously. In the latter case the Pauli principle, even in the absence of a potential energy of the cluster-cluster interaction, leads to the inelastic processes and secures an existence of both the bound state and resonance in the 12Be compound nucleus.Comment: 17 pages, 14 figures, 1 table; submitted to Phys.Rev.C Keywords: light neutron-rich nuclei, cluster model

    The intensity dependent mass shift: existence, universality and detection

    Full text link
    The electron mass shift in a laser field has long remained an elusive concept. We show that the mass shift can exist in pulses but that it is neither unique nor universal: it can be reduced by pulse shaping. We show also that the detection of mass shift effects in laser-particle scattering experiments is feasible with current technology, even allowing for the transverse structure of realistic beams.Comment: 5 pages, 4 figures. V2: references added, introduction expande

    Role of Optical Neuromonitoring in Neonatal Encephalopathy—Current State and Recent Advances

    Get PDF
    Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain

    Glycine Receptor Complex Analysis Using Immunoprecipitation-Blue Native Gel Electrophoresis-Mass Spectrometry.

    Get PDF
    The pentameric glycine receptor (GlyR), comprising the α1 and ÎČ subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, we provide evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes. When the affinity‐isolated GlyR complexes were fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1ÎČ‐GPHN appeared as the most abundant complex with a molecular weight of approximately 1 MDa, and GlyR α1ÎČ‐GPHN‐IQSEC3 as a minor protein complex of approximately 1.2 MDa. A third GlyR α1ÎČ‐GPHN‐IQSEC2 complex existed at the lowest amount with a mass similar to the IQSEC3‐containing complex. Using yeast two‐hybrid we demonstrate that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N‐terminal of the IQSEC3 IQ‐like domain. Our data provide direct evidence of the interaction of IQSEC3 with GlyR‐GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses
    • 

    corecore