156 research outputs found

    Noble Gas Clusters and Nanoplasmas in High Harmonic Generation

    Get PDF
    We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.Comment: 5 pages, 4 figure

    DEGREES OF FREEDOM IN THE CONTROL OF DISTILLATION COLUMNS, I. : GENERAL CONSIDERATIONS

    Get PDF

    Measurement of ion emission from plasmas obtained with a 600 fs KrF laser

    Get PDF
    Ion emission from plasmas obtained by the use of a 600 fs, 36 mJ KrF laser operating at 248 nm was measured and analysed for a variety of targets at different laser intensities. The intensity was set by changing the distance between the focusing lens and the target. It was found that the ions emitted originate from impurities and ions from the bulk of the target can be produced only in the subsequent shots. Proton emission was identified from some targets, but the energy of the protons was low (less than 12 keV). A new silicon carbide semiconductor detector proved to be applicable for the collection of the ions

    Pre-Excitation Studies for Rubidium-Plasma Generation

    Full text link
    The key element in the Proton-Driven-Plasma-Wake-Field-Accelerator (AWAKE) project is the generation of highly uniform plasma from Rubidium vapor. The standard way to achieve full ionization is to use high power laser which can assure the over-barrier-ionization (OBI) along the 10 meters long active region. The Wigner-team in Budapest is investigating an alternative way of uniform plasma generation. The proposed Resonance Enhanced Multi Photon Ionization (REMPI) scheme probably can be realized by much less laser power. In the following the resonant pre-excitations of the Rb atoms are investigated, theoretically and the status report about the preparatory work on the experiment are presented.Comment: 8 pages, 6 figures, submitted to Nucl. Inst. and Meth. in Phys. Res.

    Status of short-pulse KrF amplifier research and development at Hill, Szeged

    Get PDF
    The small saturation energy density of excimers requires amplifiers of large cross-sections for amplification of short pulses of already medium power. Homogeneous excitation of large volumes of Fluorine-based gas mixtures by discharge pumping is a critical interplay of the properties of both pumping and preionization; generally necessitating an intense, spatially and temporally controlled xray preionization. In the present realization at High Intensity Laser Laboratory (HILL) the stringent intensity requirements of preionization are fulfilled by reducing the pulse duration of the x-ray flash to ~16 ns, and by positioning the x-ray source in the near vicinity of the active volume. By proper choice of the positions of two cylindrical x-ray guns the spatial distribution of preionization can be tuned to (and around) the optimum distribution giving a practical method to compensate for eventual inhomogenities of the E-field of excitation and to tune the discharge to the desired geometry. In this way the realization of a KrF excimer amplifier of ~5 x 4 cm2 cross-section is presented

    Comparison of immune activation of the COVID vaccines : ChAdOx1, BNT162b2, mRNA-1273, BBIBP-CorV, and Gam-COVID-Vac from serological human samples in Hungary showed higher protection after mRNA-based

    Get PDF
    To gain insight into the different protective mechanisms of approved vaccines, this study focuses on the comparison of humoral and cellular immune responses of five widely used vaccines including ChAdOx1 (AZD1222, AstraZeneca), BNT162b2 (Pfizer), mRNA-1273 (Moderna), BBIBP-CorV (Sinopharm), and Gam-COVID-Vac (Sputnik V).Isolated plasma from 95 volunteers' blood samples was used to measure anti-SARS-CoV-2 humoral and cellular immune responses. Positive controls were recovered patients from COVID-19 (unvaccinated). Specific quantification kits for anti-nucleocapsid IgG, anti-Spike protein IgG, neutralizing antibodies as well as specific SARS-CoV-2 antigens for T-cell activation were used and Spearman correlation and matrix analyses were performed to compare overall immune responses.Nucleocapsid antibodies were significantly higher for the BBIBP-CorV and convalescent group when compared to other vaccines. In contrast, subjects vaccinated with BNT162b2 and mRNA-1273 presented significantly higher anti-spike IgG. In fact, 9.1% of convalescent, 4.5% of Gam-COVID-Vac, 28.6% of ChAdOx1, and 12.5% of BBIBP-CorV volunteers did not generate anti-spike IgG. Similarly, a positive correlation was observed after the neutralization assay. T-cell activation studies showed that mRNA-based vaccines induced a T-cell driven immune response in all cases, while 55% of convalescents, 8% of BNT162b1, 12,5% of mRNA-1273, 9% of Gam-COVID-Vac, 57% of ChAdOx1, and 56% of BBIBP-CorV subjects presented no cellular response. Further correlation matrix analyses indicated that anti-spike IgG and neutralizing antibodies production, and T-cell activation follow the same trend after immunization.RNA-based vaccines induced the most robust adaptive immune activation against SARS-CoV-2 by promoting a significantly higher T-cell response, anti-spike IgG and neutralization levels. Vector-based vaccines protected against the virus at a comparable level to convalescent patients

    Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction.

    Get PDF
    The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic-inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry
    corecore