173 research outputs found

    Modulational instabilities in Josephson oscillations of elongated coupled condensates

    Full text link
    We study the Josephson oscillations of two coupled elongated condensates. Linearized calculations show that the oscillating mode uniform over the length of the condensates (uniform Josephson mode) is unstable : modes of non zero longitudinal momentum grow exponentially. In the limit of strong atom interactions, we give scaling laws for the instability time constant and unstable wave vectors. Beyond the linearized approach, numerical calculations show a damped recurrence behavior : the energy in the Josephson mode presents damped oscillations. Finally, we derive conditions on the confinement of the condensates to prevent instabilities

    Realizing a stable magnetic double-well potential on an atom chip

    Full text link
    We discuss design considerations and the realization of a magnetic double-well potential on an atom chip using current-carrying wires. Stability requirements for the trapping potential lead to a typical size of order microns for such a device. We also present experiments using the device to manipulate cold, trapped atoms

    Towards a monolithic optical cavity for atom detection and manipulation

    Full text link
    We study a Fabry-Perot cavity formed from a ridge waveguide on a AlGaAs substrate. We experimentally determined the propagation losses in the waveguide at 780 nm, the wavelength of Rb atoms. We have also made a numerical and analytical estimate of the losses induced by the presence of the gap which would allow the interaction of cold atoms with the cavity field. We found that the intrinsic finesse of the gapped cavity can be on the order of F ~ 30, which, when one takes into account the losses due to mirror transmission, corresponds to a cooperativity parameter for our system C ~ 1

    Specular reflection of matter waves from a rough mirror

    Get PDF
    We have made a high resolution study of the specularity of the atomic reflection from an evanescent wave mirror using velocity selective Raman transitions. We have observed a double structure in the velocity distribution after reflection: a peak consistent with specular reflection and a diffuse reflection pedestal, whose contribution decreases rapidly with increasing detuning. The diffuse reflection is due to two distinct effects: spontaneous emission in the evanescent wave and a roughness in the evanescent wave potential whose amplitude is smaller than the de Broglie wavelength of the reflected atoms

    Symmetric microwave potentials for interferometry with thermal atoms on a chip

    No full text
    International audienceA trapped atom interferometer involving state-selective adiabatic potentials with two microwave frequencies on a chip is proposed. We show that this configuration provides a way to achieve a high degree of symmetry between the two arms of the interferometer, which is necessary for coherent splitting and recombination of thermal (i.e., noncondensed) atoms. The resulting interferometer holds promise to achieve high contrast and long coherence time, while avoiding the mean-field interaction issues of interferometers based on trapped Bose-Einstein condensates

    Effective spin model for interband transport in a Wannier-Stark lattice system

    Full text link
    We show that the interband dynamics in a tilted two-band Bose-Hubbard model can be reduced to an analytically accessible spin model in the case of resonant interband oscillations. This allows us to predict the revival time of these oscillations which decay and revive due to inter-particle interactions. The presented mapping onto the spin model and the so achieved reduction of complexity has interesting perspectives for future studies of many-body systems.Comment: 7 pages, 4 figure

    Andreev bound states in high-TcT_c superconducting junctions

    Full text link
    The formation of bound states at surfaces of materials with an energy gap in the bulk electron spectrum is a well known physical phenomenon. At superconductor surfaces, quasiparticles with energies inside the superconducting gap Δ\Delta may be trapped in bound states in quantum wells, formed by total reflection against the vacuum and total Andreev reflection against the superconductor. Since an electron reflects as a hole and sends a Cooper pair into the superconductor, the surface states give rise to resonant transport of quasiparticle and Cooper pair currents, and may be observed in tunneling spectra. In superconducting junctions, these surface states may hybridize and form bound Andreev states, trapped between the superconducting electrodes. In d-wave superconductors, the order parameter changes sign under 90o90^o rotation and, as a consequence, Andreev reflection may lead to the formation of zero energy quasiparticle bound states, midgap states (MGS). The formation of MGS is a robust feature of d-wave superconductivity and provides a unified framework for many important effects which will be reviewed: large Josephson current, low-temperature anomaly of the critical Josephson current, π\pi-junction behavior, 0→π0\to \pi junction crossover with temperature, zero-bias conductance peaks, paramagnetic currents, time reversal symmetry breaking, spontaneous interface currents, and resonance features in subgap currents. Taken together these effects, when observed in experiments, provide proof for d-wave superconductivity in the cuprates.Comment: 52 pages, 20 figures. Review article under consideration for publication in Superconductor Science and Technolog

    Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications

    Get PDF
    We present the results of the characterization of Mg/Co periodic multilayers and their thermal stability for the EUV range. The annealing study is performed up to a temperature of 400\degree C. Images obtained by scanning transmission electron microscopy and electron energy loss spectroscopy clearly show the good quality of the multilayer structure. The measurements of the EUV reflectivity around 25 nm (~49 eV) indicate that the reflectivity decreases when the annealing temperature increases above 300\degreeC. X-ray emission spectroscopy is performed to determine the chemical state of the Mg atoms within the Mg/Co multilayer. Nuclear magnetic resonance used to determine the chemical state of the Co atoms and scanning electron microscopy images of cross sections of the Mg/Co multilayers reveal changes in the morphology of the stack from an annealing temperature of 305\degreee;C. This explains the observed reflectivity loss.Comment: Published in Applied Physics A: Materials Science \& Processing Published at http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21 page

    Camparison of the Hanbury Brown-Twiss effect for bosons and fermions

    Full text link
    Fifty years ago, Hanbury Brown and Twiss (HBT) discovered photon bunching in light emitted by a chaotic source, highlighting the importance of two-photon correlations and stimulating the development of modern quantum optics . The quantum interpretation of bunching relies upon the constructive interference between amplitudes involving two indistinguishable photons, and its additive character is intimately linked to the Bose nature of photons. Advances in atom cooling and detection have led to the observation and full characterisation of the atomic analogue of the HBT effect with bosonic atoms. By contrast, fermions should reveal an antibunching effect, i.e., a tendency to avoid each other. Antibunching of fermions is associated with destructive two-particle interference and is related to the Pauli principle forbidding more than one identical fermion to occupy the same quantum state. Here we report an experimental comparison of the fermion and the boson HBT effects realised in the same apparatus with two different isotopes of helium, 3He (a fermion) and 4He (a boson). Ordinary attractive or repulsive interactions between atoms are negligible, and the contrasting bunching and antibunching behaviours can be fully attributed to the different quantum statistics. Our result shows how atom-atom correlation measurements can be used not only for revealing details in the spatial density, or momentum correlations in an atomic ensemble, but also to directly observe phase effects linked to the quantum statistics in a many body system. It may thus find applications to study more exotic situations >.Comment: Nature 445, 402 (2007). V2 includes the supplementary informatio
    • …
    corecore