13 research outputs found

    ΠšΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° сСрно-кислотного выщСлачивания никСля ΠΈΠ· ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² рСнийсодСрТащих супСрсплавов

    Get PDF
    The paper studies the kinetics of sulfuric acid leaching of nickel, the main component of grinding waste of ZhS-32VI rheniumcontaining heat-resistant superalloy formed during mechanical processing of products and containing such impurities as abrasive materials, oils, ceramics and other contaminants with refractory metal concentration in a solid residue, in agitation mode. The nickel content is 60 %. In addition to nickel, grinding waste contains other metals such as rhenium, chromium, cobalt, tungsten, tantalum, molybdenum, hafnium, titanium, and aluminum. The process of nickel leaching from waste with a sulfuric acid solution was carried out in a thermostated cell at an elevated temperature (55–85 Β°Π‘), waste : 3 M H2SO4 solution phase ratio of 1 g : 10 ml, and stirring rate of 200 min–1. Kinetics was studied using a fraction of –0.071 mm with the highest yield (49.2 wt.%) in grinding waste. Convex kinetic curves of nickel leaching from waste were obtained. It was found that when the temperature changes from 55 to 85 Β°Π‘, the time until leaching stops decreases from 220 to 140 min, and nickel recovery from the solution increases from 45 to 99 %. The data of the obtained kinetic curves were linearized according to the Β«contracting sphereΒ» equation, Gistling–Braunstein and Kazeev–Erofeev equations (the latter is most suitable for description). Taking into account the assessment of anamorphosis correlation coefficients, it was found that nickel leaching from grinding waste is limited by the chemical reaction, and the process proceeds in the kinetic region of the reaction. The apparent activation energy calculated using the Arrhenius equation and rate constants obtained by processing linearized kinetic curves according to the Β«contracting sphereΒ» model, was 47.5Β±0.5 kJ/mol. This value confirms the course of the process in the kinetic region where the process can be intensified by increasing its temperature.Π’ Π°Π³ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° сСрно-кислотного выщСлачивания никСля – основного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Re-содСрТащСго ΠΆΠ°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ супСрсплава Π–Π‘-32Π’Π˜, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ мСханичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈ содСрТащих примСси Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, масСл, ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π·Π°Π³Ρ€ΡΠ·Π½ΡΡŽΡ‰ΠΈΠ΅ вСщСства, с ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ‚ΡƒΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ остаткС. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ никСля составляСт 60 %, Π° ΠΊΡ€ΠΎΠΌΠ΅ Π½Π΅Π³ΠΎ, Π² ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄Π°Ρ… ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π»Π»Ρ‹, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Ρ€Π΅Π½ΠΈΠΉ, Ρ…Ρ€ΠΎΠΌ, ΠΊΠΎΠ±Π°Π»ΡŒΡ‚, Π²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌ, Ρ‚Π°Π½Ρ‚Π°Π», ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½, Π³Π°Ρ„Π½ΠΈΠΉ, Ρ‚ΠΈΡ‚Π°Π½ ΠΈ алюминий. ΠŸΡ€ΠΎΡ†Π΅ΡΡ выщСлачивания никСля ΠΈΠ· ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² раствором сСрной кислоты осущСствляли Π² тСрмостатированной ячСйкС ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ (55–85 Β°Π‘), ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Ρ„Π°Π· ΠΎΡ‚Ρ…ΠΎΠ΄Ρ‹ : 3 М раствор H2SO4, Ρ€Π°Π²Π½ΠΎΠΌ 1 Π³ : 10 ΠΌΠ», ΠΈ скорости ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ – 200 мин–1. Для изучСния ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ использовали Ρ„Ρ€Π°ΠΊΡ†ΠΈΡŽ –0,071 ΠΌΠΌ с наибольшим Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ (49,2 мас.%) Π² составС ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ кинСтичСскиС ΠΊΡ€ΠΈΠ²Ρ‹Π΅ выщСлачивания никСля ΠΈΠ· ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ², ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΎΡ‚ 55 Π΄ΠΎ 85 Β°Π‘ врСмя Π΄ΠΎ прСкращСния выщСлачивания ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ с 220 Π΄ΠΎ 140 ΠΌΠΈΠ½, Π° ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ никСля ΠΈΠ· раствора увСличиваСтся ΠΎΡ‚ 45 Π΄ΠΎ 99 %. Π”Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… кинСтичСских ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΠΎ уравнСниям Β«ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅ΠΉΡΡ сфСры», Гистлинга-Π‘Ρ€ΠΎΡƒΠ½ΡˆΡ‚Π΅ΠΉΠ½Π° ΠΈ ΠšΠ°Π·Π΅Π΅Π²Π°β€“Π•Ρ€ΠΎΡ„Π΅Π΅Π²Π° (послСднСС Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½ΠΎ для описания). Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΎΡ†Π΅Π½ΠΊΠΈ коэффициСнтов коррСляции Π°Π½Π°ΠΌΠΎΡ€Ρ„ΠΎΠ· установлСно, Ρ‡Ρ‚ΠΎ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ никСля ΠΈΠ· ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Π»ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΠ΅Ρ‚ химичСская рСакция ΠΈ процСсс ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π² кинСтичСской области рСагирования. ΠšΠ°ΠΆΡƒΡ‰Π°ΡΡΡ энСргия Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ, рассчитанная с использованиСм уравнСния АррСниуса ΠΈ констант скоростСй, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… кинСтичСских ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΏΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ Β«ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅ΠΉΡΡ сфСры», составила 47,5Β±0,5 ΠΊΠ”ΠΆ/моль. Π’Π°ΠΊΠΎΠ΅ Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π½ΠΈΠ΅ процСсса Π² кинСтичСской области, ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ процСсс Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π΅Π³ΠΎ провСдСния

    ΠžΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ рСния ΠΈΠ· ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² рСнийсодСрТащих супСрсплавов

    Get PDF
    The study investigated the feasibility of oxidative leaching rhenium in the presence of hydrochloric acid from machining waste (grinding waste) derived from products made of ZhS-32VI, a nickel-based heat-resistant alloy containing rhenium. This was achieved through agitation leaching process. The grinding waste fraction size of –0.071 mm, which accounted for the highest yield (49.2 wt.%), was utilized in the experiments. The rhenium leaching process was conducted in two variations: in the first option, grinding waste was mixed with a hydrochloric acid solution at ~100 Β°C, followed by the addition of hydrogen peroxide to the leaching solution after it had cooled; in the second option, leaching was performed using a hydrochloric acid solution with the gradual addition of hydrogen peroxide solution. The highest degree of rhenium leaching (91.0 %) was achieved in the first option. In this case, the initial concentration of hydrochloric acid was 8 M, and the molar ratio of the added reagents was Ξ½(HCl): Ξ½(H2O2) = 2.7 : 1.0. The kinetics of nickel leaching using a 6 M hydrochloric acid solution at 70 Β°C, with a solid-to-liquid phase ratio of 1 g : 50 ml, was also examined. The analysis of the kinetic data, processed using the β€œcontracting sphere,” Ginstling–Brounshtein, and Kazeev–Erofeev models, indicates that the nickel leaching process occurs within the kinetic region. Additionally, the kinetics of rhenium leaching from the solid residue obtained after the hydrochloric acid leaching of nickel from grinding waste was investigated. Employing the same kinetic models to analyze the data, it was determined that the limiting stage of this process involves the diffusion of hydrogen peroxide within the rhenium-containing solid residue.Β Π’ Π°Π³ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ исслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ выщСлачивания рСния Π² присутствии соляной кислоты ΠΈΠ· ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² мСханичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ²) ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· Re-содСрТащСго ΠΆΠ°Ρ€ΠΎΠΏΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ сплава Π–Π‘-32Π’Π˜ Π½Π° основС никСля. Использовали Ρ„Ρ€Π°ΠΊΡ†ΠΈΡŽ ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² –0,071 ΠΌΠΌ с наибольшим Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ (49,2 мас.%). ΠŸΡ€ΠΎΡ†Π΅ΡΡ извлСчСния рСния осущСствляли Π² Π΄Π²ΡƒΡ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°Ρ…: Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ – ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄Ρ‹ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ с раствором соляной кислоты ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ~100 Β°Π‘, послС охлаТдСния раствора выщСлачивания Π² Π½Π΅Π³ΠΎ добавляли раствор пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°; Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ – Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ раствора соляной кислоты с ΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ раствора пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°. НаибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ стСпСни извлСчСния рСния (91,0 %) наблюдалось ΠΏΡ€ΠΈ Π²Ρ‹Ρ‰Π΅Π»Π°Ρ‡ΠΈΠ²Π°Π½ΠΈΠΈ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ концСнтрация соляной кислоты составила 8 М, мольноС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ добавляСмых Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² – Ξ½(HCl) : Ξ½(H2O2) = 2,7 : 1,0. Π‘Ρ‹Π»Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π° ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° выщСлачивания никСля раствором соляной кислоты (6 М) ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 70 Β°Π‘ ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Ρ„Π°Π· ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ : раствор, Ρ€Π°Π²Π½ΠΎΠΌ 1 Π³ : 50 ΠΌΠ». Анализ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ кинСтичСских Π΄Π°Π½Π½Ρ‹Ρ… с использованиСм ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Β«ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅ΠΉΡΡ сфСры», Π“ΠΈΠ½ΡΡ‚Π»ΠΈΠ½Π³Π°β€“Π‘Ρ€ΠΎΡƒΠ½ΡˆΡ‚Π΅ΠΉΠ½Π° ΠΈ ΠšΠ°Π·Π΅Π΅Π²Π°β€“Π•Ρ€ΠΎΡ„Π΅Π΅Π²Π° позволяСт ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ процСсс выщСлачивания никСля ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π² кинСтичСской области. ИсслСдована ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° выщСлачивания рСния ΠΈΠ· Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ остатка солянокислого выщСлачивания никСля ΠΈΠ· ΡˆΠ»ΠΈΡ„ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ². ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚Π΅Ρ… ΠΆΠ΅ кинСтичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ позволяСт Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΡŽ пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π² рСнийсодСрТащСм Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ остаткС ΠΊΠ°ΠΊ Π»ΠΈΠΌΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ ΡΡ‚Π°Π΄ΠΈΡŽ.

    Π‘ΠžΠ Π‘Π¦Π˜Π― Π Π•ΠΠ˜Π― И Π’ΠΠΠΠ”Π˜Π― Π˜Π— ΠœΠ˜ΠΠ•Π ΠΠ›Π˜Π—ΠžΠ’ΠΠΠΠ«Π₯ Π ΠΠ‘Π’Π’ΠžΠ ΠžΠ’ Π’ΠžΠ›ΠžΠšΠΠ˜Π‘Π’Π«ΠœΠ˜ ИОНИВАМИ

    Get PDF
    Sorption of rhenium (VII) and vanadium (V) with FIBAN series fibrous ionites out of mineralized sulfuric-chloride solutions has been studied. Equilibrium, kinetic, and dynamic characteristics of rhenium and vanadium sorption with AK-22 grade FIBAN ionite that contains the following functional groups: =NH, –NH2, –БOOH, and ≑N are obtained. The maximum capacity of this ionite for vanadium (V) is found to be observed at pH = 4 value. Rhenium and vanadium sorption isotherms are linear and described by Henry’s equations with constants KH = 113Β±2 ml/g (R2 = 0,995) and 674Β±6 ml/g (R2 = 0,999) respectively. Integral kinetic curves of sorption are obtained under the conditions of limited solution volume. The effective diffusion coefficients of rhenium and vanadium (9,0Β·10–13 and 7,5Β·10–15 m2/s respectively) are calculated with taking the half-transformation time into account. The feasibility of rhenium and vanadium separation under the dynamic conditions is shown.Π˜Π·ΡƒΡ‡Π΅Π½Π° сорбция рСния (VII) ΠΈ ванадия (V) волокнистыми ΠΈΠΎΠ½ΠΈΡ‚Π°ΠΌΠΈ сСрии Π€Π˜Π‘ΠΠ ΠΈΠ· ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π½ΠΎ-Ρ…Π»ΠΎΡ€ΠΈΠ΄Π½Ρ‹Ρ… растворов. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ равновСсныС, кинСтичСскиС ΠΈ динамичСскиС характСристики сорбции Re ΠΈ V ΠΈΠΎΠ½ΠΈΡ‚ΠΎΠΌ Π€Π˜Π‘ΠΠ ΠΌΠ°Ρ€ΠΊΠΈ АК-22, содСрТащим ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: =NH, –NH2, –БOOH ΠΈ ≑N. УстановлСно, Ρ‡Ρ‚ΠΎ максимальная Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ этого Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π° ΠΏΠΎ ванадию (V) Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ рН = 4. Π˜Π·ΠΎΡ‚Π΅Ρ€ΠΌΡ‹ сорбции Re ΠΈ V Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ ΠΈ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π“Π΅Π½Ρ€ΠΈ с константами KΠ³ = 1,36Β±0,30 ΠΌΠ»/Π³ (R2 = 0,995) ΠΈ 674Β±21 ΠΌΠ»/Π³ (R2 = 0,999) соотвСтствСнно. Π’ условиях ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ объСма раствора ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ кинСтичСскиС ΠΊΡ€ΠΈΠ²Ρ‹Π΅ сорбции ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ полупрСвращСния рассчитаны эффСктивныС коэффициСнты Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Re ΠΈ V, ΡΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠΈΠ΅ 9,0Β·10–13 ΠΈ 7,5Β·10–15 ΠΌ2/с соотвСтствСнно. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ раздСлСния этих ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² динамичСских условиях

    Π‘ΠžΠ Π‘Π¦Π˜Π― Π Π•ΠΠ˜Π― Π˜Π— Π‘Π•Π ΠΠžΠšΠ˜Π‘Π›Π«Π₯ Π ΠΠ‘Π’Π’ΠžΠ ΠžΠ’ Π˜ΠœΠŸΠ Π•Π“ΠΠΠ’ΠΠœΠ˜, Π‘ΠžΠ”Π•Π Π–ΠΠ©Π˜ΠœΠ˜ Π’Π Π˜ΠΠ›ΠšΠ˜Π›ΠΠœΠ˜Π

    Get PDF
    The paper studies rhenium (VII) sorption from sulfuric acid solutions by impregnates based on macroporous polymer carriers (copolymers of styrene with divinylbenzene, weak acid cation exchange resion) containing commercial trialkylamine (Π’AA). The study provides equilibrium and kinetic characteristics of rhenium recovery by the impregnate based on the macroporous weakly acidic cation exchange resin (K-TAA) having the best rhenium capacity. The maximum coefficient of rhenium distribution in the K-TAA impregnate is observed in sorption from pH = 2 solutions. The rhenium sorption isotherm is described by the Langmuir equation with the K = 29Β±2 ml/g constant. A limited solution volume method was used to obtain the integral kinetic curves of sorption with a half-reaction time value considered to calculate the effective coefficients of rhenium diffusion in the impregnate amounted to (3,8Β·10–11 (295 K) and 1,3Β·10–10 (308 K) m2/s). Kinetic results linearized by the equations of models (pseudo-first, pseudo-second order, Elovich and inner diffusion) showed that kinetic curves with the highest correlation degree are described by the pseudo-second order equation with the 0,00056 (295 K) and 0,00059 (308 K) gΒ·mg–1Β·min–1 rate constants. The apparent activation energy of rhenium sorption (39Β±2 kJ/mol) was calculated using the Arrhenius equation. The K-TAA impregnate was tested for rhenium sorption from the eluate obtained by rhenium desorption from the Purolite A170, weak base anion exchange resinΒ pre-saturated with rhenium from the complex pregnant solution for leaching of products derived from poor rhenium-containing copper sulfide raw materials processed.Π’ статичСских условиях ΠΈΠ·ΡƒΡ‡Π΅Π½Π° сорбция рСния (VII) ΠΈΠ· сСрнокислых растворов ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ‚Π°ΠΌΠΈ Π½Π° основС макропористых ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… носитСлСй (сополимСров стирола с Π΄ΠΈΠ²ΠΈΠ½ΠΈΠ»Π±Π΅Π½Π·ΠΎΠ»ΠΎΠΌ, слабокислотного ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΈΡ‚Π°), содСрТащих тСхничСский Ρ‚Ρ€ΠΈΠ°Π»ΠΊΠΈΠ»Π°ΠΌΠΈΠ½ (ВАА). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ равновСсныС ΠΈ кинСтичСскиС характСристики сорбции рСния ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ‚ΠΎΠΌ К-ВАА Π½Π° основС макропористого ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΈΡ‚Π°, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ Π»ΡƒΡ‡ΡˆΠΈΠ΅ СмкостныС характСристики ΠΏΠΎ Ρ€Π΅Π½ΠΈΡŽ. МаксимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ коэффициСнта распрСдСлСния рСния Π² ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ‚Π΅ К-ВАА Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ сорбции ΠΈΠ· растворов с рН = 2. Π˜Π·ΠΎΡ‚Π΅Ρ€ΠΌΠ° сорбции рСния описываСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π›Π΅Π½Π³ΠΌΡŽΡ€Π° с константой K = 29Β±2 ΠΌΠ»/Π³. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ объСма раствора ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ кинСтичСскиС ΠΊΡ€ΠΈΠ²Ρ‹Π΅ сорбции ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ полупрСвращСния рассчитаны эффСктивныС коэффициСнты Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ рСния Π² ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ‚Π΅, ΡΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠΈΠ΅ 3,8Β·10–11 (295 K) ΠΈ 1,3Β·10–10 (308 K) ΠΌ2/с. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° кинСтичСских Π΄Π°Π½Π½Ρ‹Ρ… Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΠΎ уравнСниям ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ псСвдопСрвого, псСвдовторого порядка, Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ ΠΈ Π•Π»ΠΎΠ²ΠΈΡ‡Π° ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ кинСтичСскиС ΠΊΡ€ΠΈΠ²Ρ‹Π΅ с Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ коррСляции ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ псСвдовторого порядка с константами скорости 0,00056 (295 K) ΠΈ 0,00059 (308 K) г·мг–1·мин–1. По ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ АррСниуса рассчитано Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ каТущСйся энСргии Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ сорбции рСния, ΡΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠ΅Π΅ 39Β±2 ΠΊΠ”ΠΆ/моль. ΠžΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½Π° апробация ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ‚Π° К-ВАА для сорбции рСния ΠΈΠ· ΡΠ»ΡŽΠ°Ρ‚Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ дСсорбции рСния со слабоосновного Π°Π½ΠΈΠΎΠ½ΠΈΡ‚Π° Purolite A170, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ насыщСнного Ρ€Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· слоТного ΠΏΠΎ составу ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ раствора выщСлачивания ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±Π΅Π΄Π½ΠΎΠ³ΠΎ рСнийсодСрТащСго ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅Π΄Π½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ

    Борбция скандия Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ углями ΠΈΠ· сСрнокисло-Ρ…Π»ΠΎΡ€ΠΈΠ΄Π½Ρ‹Ρ… растворов

    No full text
    The study covers scandium adsorption in batch conditions by VSK, DAS and PFT activated carbon grades (Russia) of different origin (сoconut shell, Π°nthracite, thermoset waste, respectively) from sulfuric acid-chloride solutions (pH = 2) simulating the composition of the underground leaching solutions of polymetallic ores. It was found that scandium adsorption by DAS and VSK carbons proceeds with the highest distribution coefficients (133 and 45.8 cm3/g, respectively). Isotherms of scandium adsorption with these carbons are linear and described by the Henry equation with constants 133 Β± 21 and 46 Β± 7 cm3/g, respectively. A limited solution volume method was used to obtain the integral kinetic curves of scandium adsorption. Their linearization according to the kinetic models of the pseudo-first, pseudo-second order, the Elovich model and the Weber–Morris intra-particle diffusion model indicates that the kinetics of scandium adsorption with VSK carbon having a higher correlation coefficient (0.999) is described using the pseudo-second order model. Description of the kinetic data obtained during the adsorption of scandium with DAS carbon showed that for all the models used the correlation coefficient is low (<0.939), while the highest value is observed when using the intra-particle diffusion model. It was suggested that the scandium adsorption process occurs in the mixed diffusion region. The possibility of scandium elution from VSK and DAS carbons with sodium carbonate solution (10 %) was studied in batch conditions, where the degree of scandium desorption in two stages of elution was 84.0 and 90.4 %, respectively.Π’ статичСских условиях ΠΈΠ·ΡƒΡ‡Π΅Π½Π° адсорбция скандия Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ углями ΠΌΠ°Ρ€ΠΎΠΊ Π’Π‘Πš, ДАБ ΠΈ ПЀВ (Россия), ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ (соотвСтствСнно скорлупа кокосового ΠΎΡ€Π΅Ρ…Π°, Π°Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ‚, ΠΎΡ‚Ρ…ΠΎΠ΄Ρ‹ рСактопластов) ΠΈΠ· сСрнокисло-Ρ…Π»ΠΎΡ€ΠΈΠ΄Π½Ρ‹Ρ… растворов (рН = 2), ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… состав растворов ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ выщСлачивания ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚Π°Π»Π»ΡŒΠ½Ρ‹Ρ… Ρ€ΡƒΠ΄. УстановлСно, Ρ‡Ρ‚ΠΎ сорбция скандия углями ΠΌΠ°Ρ€ΠΎΠΊ ДАБ ΠΈ Π’Π‘Πš ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ с Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высокими коэффициСнтами распрСдСлСния (133 ΠΈ 45,8 см3/Π³ соотвСтствСнно). ΠŸΡ€ΠΈ этом сорбция скандия ΡƒΠ³Π»Π΅ΠΌ ДАБ характСризуСтся ΠΈ большим ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹ΠΌ коэффициСнтом (116 см3 Ρ€-Ρ€Π°/см3 угля). Π˜Π·ΠΎΡ‚Π΅Ρ€ΠΌΡ‹ сорбции скандия этими углями ΠΈΠΌΠ΅ΡŽΡ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π“Π΅Π½Ρ€ΠΈ с константами 133 Β± 21 ΠΈ 46 Β± 7 см3/Π³. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ объСма раствора ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ кинСтичСскиС ΠΊΡ€ΠΈΠ²Ρ‹Π΅ сорбции скандия, линСаризация ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎ кинСтичСским модСлям псСвдопСрвого, псСвдовторого порядка, ΠΌΠΎΠ΄Π΅Π»ΠΈ Π•Π»ΠΎΠ²ΠΈΡ‡Π° ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠ΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π’Π΅Π±Π΅Ρ€Π°β€“ΠœΠΎΡ€Ρ€ΠΈΡΠ° ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° сорбции скандия ΡƒΠ³Π»Π΅ΠΌ Π’Π‘Πš c Π±ΠΎΠ»Π΅Π΅ высоким Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ коэффициСнта коррСляции (0,999) описываСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠΎΠ΄Π΅Π»ΠΈ псСвдовторого порядка. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° кинСтичСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ сорбции скандия ΡƒΠ³Π»Π΅ΠΌ ДАБ ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ использовании всСх ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ коэффициСнт коррСляции Π½ΠΈΠ·ΠΊΠΈΠΉ (<0,939), ΠΏΡ€ΠΈ этом наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠ΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. Высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ процСсс сорбции скандия ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π² смСшанно-Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ области. Π’ статичСских условиях ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡΠ»ΡŽΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ скандия с ΡƒΠ³Π»Π΅ΠΉ Π’Π‘Πš ΠΈ ДАБ раствором ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π° натрия (10 %) – ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ дСсорбции скандия Π·Π° Π΄Π²Π΅ ступСни ΡΠ»ΡŽΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ составила 84,0 ΠΈ 90,4 % соотвСтствСнно

    Clinical Practice Guidelines of the Scientific Society for the Clinical Study of Human Microbiome, of the Russian Gastroenterological Association and the Russian Society for the Prevention of Noncommunicable Diseases on the Diagnosis and Treatment of <i>Clostridioides difficile</i> (<i>C. difficile</i>)-associated Disease in Adults

    No full text
    Аim: the clinical practice guidelines intended for gastroenterologists, internal medicine specialists, infectious disease specialists, general practitioners (family doctors), coloproctologists, surgeons and endoscopists present modern methods of diagnosis, prevention and treatment of C. difficile-associated disease.Key points. C. difficile-associated disease is a disease that develops when the diversity of the intestinal microbiota decreases and C. difficile excessively colonizes the colon, the toxins of which damage the intestinal muco-epithelial barrier, followed by the development of inflammation in the colon wall, with diarrhea being a characteristic clinical manifestation. The clinical presentation of the disease can vary from asymptomatic carriage, mild to moderate diarrhea that resolves on its own, to profuse watery diarrhea and pseudomembranous colitis with development of life-threatening complications. The diagnosis of C. difficile-associated disease is based on an assessment of the clinical presentation, medical history, an objective examination of the patient and laboratory stool tests. The disease severity is determined by clinical symptoms and laboratory findings. Additional diagnostic methods that are used according to indications and contribute to the assessment of severity include endoscopy of the colon and abdominal cavity imaging methods. Treatment should be initiated in cases of characteristic clinical presentation of C. difficile-associated disease and positive laboratory stool testing. The choice of drug and treatment regimen depends on the severity of the episode, the presence of complications, and whether the episode is initial, recurrent, or reinfection.Conclusion. Determination of target groups of patients for the diagnosis of clostridial infection is important in preventing overdiagnosis and subsequent unnecessary treatment. Timely diagnosis and treatment of C. difficile-associated disease help avoiding the development of life-threatening complications and improve the prognosis and quality of life of patients
    corecore