2,437 research outputs found

    On the Spectrum of the Resonant Quantum Kicked Rotor

    Full text link
    It is proven that none of the bands in the quasi-energy spectrum of the Quantum Kicked Rotor is flat at any primitive resonance of any order. Perturbative estimates of bandwidths at small kick strength are established for the case of primitive resonances of prime order. Different bands scale with different powers of the kick strength, due to degeneracies in the spectrum of the free rotor.Comment: Description of related published work has been expanded in the Introductio

    Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    Full text link
    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which assumes a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 3 figures, contributed talk at the workshop: High Energy Phenomena in Relativistic Outflows (HEPRO), Dublin, 24-28 September 2007. Fig. 3 is replaced by the correct versio

    A numerical and symbolical approximation of the Nonlinear Anderson Model

    Full text link
    A modified perturbation theory in the strength of the nonlinear term is used to solve the Nonlinear Schroedinger Equation with a random potential. It is demonstrated that in some cases it is more efficient than other methods. Moreover we obtain error estimates. This approach can be useful for the solution of other nonlinear differential equations of physical relevance.Comment: 21 pages and 7 figure

    Antiresonance and Localization in Quantum Dynamics

    Full text link
    The phenomenon of quantum antiresonance (QAR), i.e., exactly periodic recurrences in quantum dynamics, is studied in a large class of nonintegrable systems, the modulated kicked rotors (MKRs). It is shown that asymptotic exponential localization generally occurs for η\eta (a scaled \hbar) in the infinitesimal vicinity of QAR points η0\eta_0. The localization length ξ0\xi_0 is determined from the analytical properties of the kicking potential. This ``QAR-localization" is associated in some cases with an integrable limit of the corresponding classical systems. The MKR dynamical problem is mapped into pseudorandom tight-binding models, exhibiting dynamical localization (DL). By considering exactly-solvable cases, numerical evidence is given that QAR-localization is an excellent approximation to DL sufficiently close to QAR. The transition from QAR-localization to DL in a semiclassical regime, as η\eta is varied, is studied. It is shown that this transition takes place via a gradual reduction of the influence of the analyticity of the potential on the analyticity of the eigenstates, as the level of chaos is increased.Comment: To appear in Physical Review E. 51 pre-print pages + 9 postscript figure

    Dimer Decimation and Intricately Nested Localized-Ballistic Phases of Kicked Harper

    Full text link
    Dimer decimation scheme is introduced in order to study the kicked quantum systems exhibiting localization transition. The tight-binding representation of the model is mapped to a vectorized dimer where an asymptotic dissociation of the dimer is shown to correspond to the vanishing of the transmission coefficient thru the system. The method unveils an intricate nesting of extended and localized phases in two-dimensional parameter space. In addition to computing transport characteristics with extremely high precision, the renormalization tools also provide a new method to compute quasienergy spectrum.Comment: There are five postscript figures. Only half of the figure (3) is shown to reduce file size. However, missing part is the mirror image of the part show

    The possibility of a metal insulator transition in antidot arrays induced by an external driving

    Full text link
    It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a related model system in presence of a magnetic field and an AC electric field is developed. In the limit of strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numerically and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of the electric field is varied a metal -- insulator transition may be found. The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p

    Manipulation of the Spin Memory of Electrons in n-GaAs

    Full text link
    We report on the optical manipulation of the electron spin relaxation time in a GaAs based heterostructure. Experimental and theoretical study shows that the average electron spin relaxes through hyperfine interaction with the lattice nuclei, and that the rate can be controlled by the electron-electron interactions. This time has been changed from 300 ns down to 5 ns by variation of the laser frequency. This modification originates in the optically induced depletion of n-GaAs layer

    Magnetic properties of the S=1/2 quasi square lattice antiferromagnet CuF2(H2O)2(pyz) (pyz=pyrazine) investigated by neutron scattering

    Get PDF
    We have performed elastic and inelastic neutron experiments on single crystal samples of the coordination polymer compound CuF2(H2O)2(pyz) (pyz=pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements indicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 +/- 0.03 muB/Cu. This value is significantly smaller than the single ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two dimensional Heisenberg model with a nearest neighbor magnetic exchange constant J2d = 0.934 +/-0.0025 meV. The inter-layer interaction Jperp in this compound is less than 1.5% of J2d. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by ~10.3 +/- 1.4 %. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations which include corrections for quantum fluctuations to linear spin wave theory.Comment: 7 pages, 6 figure
    corecore