8,823 research outputs found
Inhomogeneities and the modeling of radio supernovae
Observations of radio supernovae often exhibit characteristics not readily
accounted for by a homogeneous, spherically symmetric synchrotron model; e.g.,
flat-topped spectra/lightcurves. It is shown that many of these deviations from
the standard model can be attributed to an inhomogeneous source structure. It
is argued that the radio emission in Type Ib/c supernovae has a small volume
filling factor and comes from a narrow region associated with the forward
shock, while the radio emission region in SN 1993J (Type IIb) is determined by
the extent of the Rayleigh-Taylor instability emanating from the contact
discontinuity. Attention is also drawn to the similarities between radio
supernovae and the structural properties of supernova remnants.Comment: 21 pages, 4 figures. Accepted to Ap
Radio Emission and Particle Acceleration in SN 1993J
The radio light curves of SN 1993J are found to be well fit by a synchrotron
spectrum, suppressed by external free-free absorption and synchrotron
self-absorption. A standard r^-2 circumstellar medium is assumed, and found to
be adequate. The magnetic field and number density of relativistic electrons
behind the shock are determined. The strength of the magnetic field argues
strongly for turbulent amplification behind the shock. The ratio of the
magnetic and thermal energy density behind the shock is ~0.14. Synchrotron and
Coulomb cooling dominate the losses of the electrons. The injected electron
spectrum has a power law index -2.1, consistent with diffusive shock
acceleration, and the number density scales with the thermal electron energy
density. The total energy density of the relativistic electrons is, if
extrapolated to gamma ~ 1, ~ 5x10^-4 of the thermal energy density. The
free-free absorption required is consistent with previous calculations of the
circumstellar temperature of SN 1993J, T_e ~ (2-10)x10^5 K. The relative
importance of free-free absorption, Razin suppression, and the synchrotron
self-absorption effect for other supernovae are briefly discussed. Guidelines
for the modeling and interpretation of VLBI observations are given.Comment: accepted for Ap.
Multiple synchrotron self-Compton modeling of gamma-ray flares in 3C 279
The correlation often observed in blazars between optical-to-radio outbursts
and gamma-ray flares suggests that the high-energy emission region shall be
co-spatial with the radio knots, several parsecs away from the central engine.
This would prevent the important contribution at high-energies from the Compton
scattering of seed photons from the accretion disk and the broad-line region
that is generally used to model the spectral energy distribution of
low-frequency peaking blazars. While a pure synchrotron self-Compton model has
so far failed to explain the observed gamma-ray emission of a flat spectrum
radio quasar like 3C 279, the inclusion of the effect of multiple
inverse-Compton scattering might solve the apparent paradox. Here, we present
for the first time a physical, self-consistent SSC modeling of a series of
shock-waves in the jet of 3C 279. We show that the analytic description of the
high-energy emission from multiple inverse-Compton scatterings in the
Klein-Nishina limit can fairly well account for the observed gamma-ray spectrum
of 3C 279 in flaring states.Comment: 6 pages, 3 figures, proceedings of "Beamed and Unbeamed Gamma-rays
from Galaxies", 11-15 April 2011, Finland. To be published in the Journal of
Physics: Conference Serie
Thermoelectric power factor limit of a 1D nanowire
In the past decade, there has been significant interest in the potentially
advantageous thermoelectric properties of one-dimensional (1D) nanowires, but
it has been challenging to find high thermoelectric power factors based on 1D
effect in practice. Here we point out that there is an upper limit to the
thermoelectric power factor of non-ballistic 1D nanowires, as a consequence of
the recently established quantum bound of thermoelectric power output. We
experimentally test this limit in quasi-ballistic InAs nanowires by extracting
the maximum power factor of the first 1D subband through I-V characterization,
finding that the measured maximum power factors conform to the theoretical
limit. The established limit predicts that a competitive power factor, on the
order of mW/m-K^2, can be achieved by a single 1D electronic channel in
state-of-the-art semiconductor nanowires with small cross-section and high
crystal quality
Tracking the evolution of multiple in vitro HCV replicon mutants under protease inhibitor selection pressure by 454 ultra deep sequencing.
Matter and dynamics in closed cosmologies
To systematically analyze the dynamical implications of the matter content in
cosmology, we generalize earlier dynamical systems approaches so that perfect
fluids with a general barotropic equation of state can be treated. We focus on
locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal
perfect fluid models, since such models exhibit a particularly rich dynamical
structure and also illustrate typical features of more general cases. For these
models, we recast Einstein's field equations into a regular system on a compact
state space, which is the basis for our analysis. We prove that models expand
from a singularity and recollapse to a singularity when the perfect fluid
satisfies the strong energy condition. When the matter source admits Einstein's
static model, we present a comprehensive dynamical description, which includes
asymptotic behavior, of models in the neighborhood of the Einstein model; these
results make earlier claims about ``homoclinic phenomena and chaos'' highly
questionable. We also discuss aspects of the global asymptotic dynamics, in
particular, we give criteria for the collapse to a singularity, and we describe
when models expand forever to a state of infinite dilution; possible initial
and final states are analyzed. Numerical investigations complement the
analytical results.Comment: 23 pages, 24 figures (compressed), LaTe
The origin and evolution of syntax errors in simple sequence flow models in BPMN
How do syntax errors emerge? What is the earliest moment that potential syntax errors can be detected? Which evolution do syntax errors go through during modeling? A provisional answer to these questions is formulated in this paper based on an investigation of a dataset containing the operational details of 126 modeling sessions. First, a list is composed of the different potential syntax errors. Second, a classification framework is built to categorize the errors according to their certainty and severity during modeling (i.e., in partial or complete models). Third, the origin and evolution of all syntax errors in the dataset are identified. This data is then used to collect a number of observations, which form a basis for future research
Electrical control of spins and giant g-factors in ring-like coupled quantum dots
Emerging theoretical concepts for quantum technologies have driven a
continuous search for structures where a quantum state, such as spin, can be
manipulated efficiently. Central to many concepts is the ability to control a
system by electric and magnetic fields, relying on strong spin-orbit
interaction and a large g-factor. Here, we present a new mechanism for spin and
orbital manipulation using small electric and magnetic fields. By hybridizing
specific quantum dot states at two points inside InAs nanowires, nearly perfect
quantum rings form. Large and highly anisotropic effective g-factors are
observed, explained by a strong orbital contribution. Importantly, we find that
the orbital and spin-orbital contributions can be efficiently quenched by
simply detuning the individual quantum dot levels with an electric field. In
this way, we demonstrate not only control of the effective g-factor from 80 to
almost 0 for the same charge state, but also electrostatic change of the ground
state spin
- …
