43 research outputs found

    Processes of ordered structure formation in polypeptide thin film solutions

    No full text

    Morphological instabilities of polymer crystals

    No full text
    We present experimental observations at comparatively low supercooling of morphology transitions from dendritic to faceted structures in polymer crystals growing in thin films of a poly-2-vinylpyridineblock-polyethyleneoxid copolymer. Our results are compared with theoretical concepts describing morphological instabilities of single crystals. Although these concepts originally were not developed for polymers, they allow to describe and interpret our experimental results quite well. In particular, the measured temperature dependence of the width W and frequency of dendritic side branches and the radius of curvature ρ of the growth tips of the crystals follow these concepts. We present preliminary evidence for the influence of polymer attachment kinetics and reorganisation processes behind the growth front. Polymer thin films provide valuable model systems for studying general concepts of crystallisation and allow to distinguish at which point the connectivity of the crystallising units within chain-like molecules starts to play a measurable role

    Halide-metal complexes at plasmonic interfaces create new decay pathways for plasmons and excited molecules

    No full text
    We show that by modifying the chemical interface of silver nanoparticles (AgNPs) with halide ions, it is possible to tune the total decay rate of adsorbed excited molecules and the plasmon damping rate. Through single-molecule surface-enhanced Raman scattering and surface-enhanced fluorescence enhancement factors of crystal violet (CV) and rhodamine 6G (R6G), we show that I–-modified AgNPs (AgNPs@I) and Br–-modified AgNPs (AgNPs@Br) lead to an increase in the total decay rate of excited CV and R6G by a factor between ∼1.6–2.6, compared to Cl–-modified AgNPs (AgNPs@Cl). In addition, we found that the chemical interface damping, which characterizes the plasmon resonance decay into surface states, is stronger on AgNPs@I and AgNPs@Br when compared to AgNPs@Cl. These results point toward the formation of metal–halide surface complexes. These new interfacial states can accept electrons from both excited molecular orbitals and surface plasmon excitations, completely altering the electronic dynamics and reactivity of plasmonic interfaces

    Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals

    No full text
    In this work, we report a comparative analysis of the infrared and Raman spectra of octa(3-hexylthiophene) (3HT)8, trideca(3-hexylthiophene) (3HT)13, and poly(3-hexylthiophene) P3HT recorded in various phases, namely, amorphous, semicrystalline, polycrystalline and single crystal. We have based our analysis on the spectra of the (3HT)8 single crystal (whose structure has been determined by selected area electron diffraction) taken as reference and on the results of DFT calculations and molecular vibrational dynamics. New and precise spectroscopic markers of the molecular structures show the existence of three phases, namely: hairy (phase 1), ordered (phase 2), and disordered/amorphous (phase 3). Conceptually, the identified markers can be used for the molecular structure analysis of other similar systems
    corecore