316 research outputs found

    On BPS preons, generalized holonomies and D=11 supergravities

    Full text link
    We develop the BPS preon conjecture to analyze the supersymmetric solutions of D=11 supergravity. By relating the notions of Killing spinors and BPS preons, we develop a moving G-frame method (G=GL(32,R), SL(32,R) or Sp(32,R)) to analyze their associated generalized holonomies. As a first application we derive here the equations determining the generalized holonomies of k/32 supersymmetric solutions and, in particular, those solving the necessary conditions for the existence of BPS preonic (31/32) solutions of the standard D=11 supergravity. We also show that there exist elementary preonic solutions, i.e. solutions preserving 31 out of 32 supersymmetries in a Chern--Simons type supergravity. We present as well a family of worldvolume actions describing the motion of pointlike and extended BPS preons in the background of a D'Auria-Fre type OSp(1|32)-related supergravity model. We discuss the possible implications for M-theory.Comment: 11 pages, RevTeX Typos corrected, a short note and references adde

    Transfer of noncoding DNA drives regulatory rewiring in bacteria

    Get PDF
    Understanding the mechanisms that generate variation is a common pursuit unifying the life sciences. Bacteria represent an especially striking puzzle, because closely related strains possess radically different metabolic and ecological capabilities. Differences in protein repertoire arising from gene transfer are currently considered the primary mechanism underlying phenotypic plasticity in bacteria. Although bacterial coding plasticity has been extensively studied in previous decades, little is known about the role that regulatory plasticity plays in bacterial evolution. Here, we show that bacterial genes can rapidly shift between multiple regulatory modes by acquiring functionally divergent nonhomologous promoter regions. Through analysis of 270,000 regulatory regions across 247 genomes, we demonstrate that regulatory “switching” to nonhomologous alternatives is ubiquitous, occurring across the bacterial domain. Using comparative transcriptomics, we show that at least 16% of the expression divergence between Escherichia coli strains can be explained by this regulatory switching. Further, using an oligonucleotide regulatory library, we establish that switching affects bacterial promoter architecture. We provide evidence that regulatory switching can occur through horizontal regulatory transfer, which allows regulatory regions to move across strains, and even genera, independently from the genes they regulate. Finally, by experimentally characterizing the fitness effect of a regulatory transfer on a pathogenic E. coli strain, we demonstrate that regulatory switching elicits important phenotypic consequences. Taken together, our findings expose previously unappreciated regulatory plasticity in bacteria and provide a gateway for understanding bacterial phenotypic variation and adaptation.National Science Foundation (U.S.) (Grant DEB-0936234

    Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings

    Full text link
    We study the topology of Hamiltonian-minimal Lagrangian submanifolds N in C^m constructed from intersections of real quadrics in a work of the first author. This construction is linked via an embedding criterion to the well-known Delzant construction of Hamiltonian toric manifolds. We establish the following topological properties of N: every N embeds as a submanifold in the corresponding moment-angle manifold Z, and every N is the total space of two different fibrations, one over the torus T^{m-n} with fibre a real moment-angle manifold R, and another over a quotient of R by a finite group with fibre a torus. These properties are used to produce new examples of Hamiltonian-minimal Lagrangian submanifolds with quite complicated topology.Comment: 14 pages, published version (minor changes

    Bulk vs. Boundary Dynamics in Anti-de Sitter Spacetime

    Get PDF
    We investigate the details of the bulk-boundary correspondence in Lorentzian signature anti-de Sitter space. Operators in the boundary theory couple to sources identified with the boundary values of non-normalizable bulk modes. Such modes do not fluctuate and provide classical backgrounds on which bulk excitations propagate. Normalizable modes in the bulk arise as a set of saddlepoints of the action for a fixed boundary condition. They fluctuate and describe the Hilbert space of physical states. We provide an explicit, complete set of both types of modes for free scalar fields in global and Poincar\'e coordinates. For \ads{3}, the normalizable and non-normalizable modes originate in the possible representations of the isometry group \SL_L\times\SL_R for a field of given mass. We discuss the group properties of mode solutions in both global and Poincar\'e coordinates and their relation to different expansions of operators on the cylinder and on the plane. Finally, we discuss the extent to which the boundary theory is a useful description of the bulk spacetime.Comment: Standard LaTeX, 28 pages, 2 postscript figures. v2: References added. Substantial revision in section 3 of treatment of global modes; non-normalizable modes have arbitrary time dependence. Revised discussion of low-mass modes and puzzle raised re: coupling of the dual boundary operators. v3: unwanted paragraph removed. v4: Sec. 5.2 correcte

    All solutions of the localization equations for N=2 quantum black hole entropy

    Full text link
    We find the most general bosonic solution to the localization equations describing the contributions to the quantum entropy of supersymmetric black holes in four-dimensional N=2 supergravity coupled to n_v vector multiplets. This requires the analysis of the BPS equations of the corresponding off-shell supergravity (including fluctuations of the auxiliary fields) with AdS2 \times S2 attractor boundary conditions. Our work completes and extends the results of arXiv:1012.0265 that were obtained for the vector multiplet sector, to include the fluctuations of all the fields of the off-shell supergravity. We find that, when the auxiliary SU(2) gauge field strength vanishes, the most general supersymmetric configuration preserving four supercharges is labelled by n_v+1 real parameters corresponding to the excitations of the conformal mode of the graviton and the scalars of the n_v vector multiplets. In the general case, the localization manifold is labelled by an additional SU(2) triplet of one-forms and a scalar function.Comment: 27 page

    Prognostic role of serum cytokeratin 19 fragments in advanced non-small-cell lung cancer: association of marker changes after two chemotherapy cycles with different measures of clinical response and survival

    Get PDF
    Prognostic implication of serum cytokeratin 19 fragments (CYFRA 21-1) was explored in 60 advanced NSCLC patients, whereas in 45 patients assessable for serological response a â©ľ35% CYFRA 21-1 decline after two chemotherapy cycles was strongly associated with non-progression (NP), defined as a sum of objective response (OR)+stable disease (P<0.0001) and survival (P=0.0002). Association of OR with survival was not significant. In multivariate survival analysis, â©ľ35% marker decline and radiological NP status were found as major determinants of prolonged survival with RR: 0.37 (P=0.01) and 0.63 (P=0.01), respectively. In advanced NSCLC patients, NP reflects therapeutic efficacy better than traditional OR. CYFRA 21-1 â©ľ35% decline seems to be a reliable surrogate marker of treatment efficacy in terms of survival

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Cloud computing and RESERVOIR project

    Get PDF
    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the RESERVOIR project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the RESERVOIR approach. Eventually, a high level view of RESERVOIR general architecture is illustrated

    Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats

    Get PDF
    OBJECTIVE:To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD) in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage. METHODS:A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR) in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P) 3. RESULTS:Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive) in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive), suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro. INTERPRETATION:These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults

    Revisiting the relevance of economic theory to hotel revenue management education and practice in the era of Big Data

    Get PDF
    Abstract This paper explores the role of economics in hospitality education and industry practice, with a particular focus on revenue management, and puts forward an argument for a return to the inclusion of economic theory in UK hospitality education, not seen since the 1990s. Given the increasing amounts of pricing data available to both managers and customers and the consequent market complexities now seen, developing economic literacy is demonstrated to be a crucial skill required for future hospitality graduates, allowing them to make successful revenue decisions and sense-check with confidence the decisions made by automated revenue systems. Economic literacy is defined as a balanced understanding of economic theory that can be applied in real-life business scenarios, extending beyond simple consideration of supply and demand to a mixture of neoclassical and behavioural approaches to economics
    • …
    corecore