3,356 research outputs found

    Tracing very high energy neutrinos from cosmological distances in ice

    Full text link
    Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes due to neutrino oscillations. We study in detail the contribution of tau neutrinos with energies above PeV relative to the contribution of the other flavors. We consider several different initial neutrino fluxes and include tau neutrino regeneration in transit through the Earth and energy loss of charged leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.Comment: 27 pages, 19 figure

    Boundary Terms, Spinors and Kerr/CFT

    Get PDF
    Similarly as in AdS/CFT, the requirement that the action for spinors be stationary for solutions to the Dirac equation with fixed boundary conditions determines the form of the boundary term that needs to be added to the standard Dirac action in Kerr/CFT. We determine this boundary term and make use of it to calculate the two-point function for spinor fields in Kerr/CFT. This two-point function agrees with the correlator of a two dimensional relativistic conformal field theory.Comment: 15 page

    The Dirac Equation Is Separable On The Dyon Black Hole Metric

    Get PDF
    Using the tetrad formalism, we carry out the separation of variables for the massive complex Dirac equation in the gravitational and electromagnetic field of a four-parameter (mass, angular momentum, electric and magnetic charges) black hole.Comment: 13 page

    Phantom redundancy: a register transfer level technique for gracefully degradable data path synthesis

    Full text link

    String Theory and Water Waves

    Full text link
    We uncover a remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain {hat c}<1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.Comment: 49 pages, 4 figure

    Algorithm XXX: SHEPPACK: Modified Shepard Algorithm for Interpolation of Scattered Multivariate Data

    Get PDF
    Scattered data interpolation problems arise in many applications. Shepard’s method for constructing a global interpolant by blending local interpolants using local-support weight functions usually creates reasonable approximations. SHEPPACK is a Fortran 95 package containing five versions of the modified Shepard algorithm: quadratic (Fortran 95 translations of Algorithms 660, 661, and 798), cubic (Fortran 95 translation of Algorithm 791), and linear variations of the original Shepard algorithm. An option to the linear Shepard code is a statistically robust fit, intended to be used when the data is known to contain outliers. SHEPPACK also includes a hybrid robust piecewise linear estimation algorithm RIPPLE (residual initiated polynomial-time piecewise linear estimation) intended for data from piecewise linear functions in arbitrary dimension m. The main goal of SHEPPACK is to provide users with a single consistent package containing most existing polynomial variations of Shepard’s algorithm. The algorithms target data of different dimensions. The linear Shepard algorithm, robust linear Shepard algorithm, and RIPPLE are the only algorithms in the package that are applicable to arbitrary dimensional data

    New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!

    Get PDF
    An extended class of N=2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, is constructed. These invariants may depend on unrestricted chiral supermultiplets, on vector supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can contribute to the entropy and electric charges of BPS black holes. Some of these invariants may be relevant for topological string deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and typos corrected, v3: reference adde

    Quasi-normal modes of Schwarzschild-de Sitter black holes

    Full text link
    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P\"{o}shl-Teller potential. The well-known asymptotic formula for large ll is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme Λ\Lambda term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200
    corecore