20 research outputs found

    Clinical Laboratory Testing Practices in Diffuse Gliomas Prior to Publication of 2021 World Health Organization Classification of Central Nervous System Tumors

    Get PDF
    CONTEXT.—: Integration of molecular data into glioma classification supports diagnostic, prognostic, and therapeutic decision-making; however, testing practices for these informative biomarkers in clinical laboratories remain unclear. OBJECTIVE.—: To examine the prevalence of molecular testing for clinically relevant biomarkers in adult and pediatric gliomas through review of a College of American Pathologists proficiency testing survey prior to the release of the 2021 World Health Organization Classification of Central Nervous System Tumors. DESIGN.—: College of American Pathologists proficiency testing 2020 survey results from 96 laboratories performing molecular testing for diffuse gliomas were used to determine the use of testing for molecular biomarkers in gliomas. RESULTS.—: The data provide perspective into the testing practices for diffuse gliomas from a broad group of clinical laboratories in 2020. More than 98% of participating laboratories perform testing for glioma biomarkers recognized as diagnostic for specific subtypes, including IDH. More than 60% of laboratories also use molecular markers to differentiate between astrocytic and oligodendroglial lineage tumors, with some laboratories providing more comprehensive analyses, including prognostic biomarkers, such as CDKN2A/B homozygous deletions. Almost all laboratories test for MGMT promoter methylation to identify patients with an increased likelihood of responding to temozolomide. CONCLUSIONS.—: These findings highlight the state of molecular testing in 2020 for the diagnosis and classification of diffuse gliomas at large academic medical centers. The findings show that comprehensive molecular testing is not universal across clinical laboratories and highlight the gaps between laboratory practices in 2020 and the recommendations in the 2021 World Health Organization Classification of Central Nervous System Tumors

    Prediction of Solar Proton Event Fluence spectra from their Peak flux spectra

    Get PDF
    Solar Proton Events (SPEs) are of great importance and significance for the study of Space Weather and Heliophysics. These populations of protons are accelerated at high energies ranging from a few MeVs to hundreds of MeVs and can pose a significant hazard both to equipment on board spacecrafts as well as astronauts as they are ionizing radiation. The ongoing study of SPEs can help to understand their characteristics, relative underlying physical mechanisms, and help in the design of forecasting and nowcasting systems which provide warnings and predictions. In this work, we present a study on the relationships between the Peak Flux and Fluence spectra of SPEs. This study builds upon existing work and provides further insights into the characteristics and the relationships of SPE Peak flux and Fluence spectra. Moreover it is shown how these relationships can be quantified in a sound manner and exploited in a simple methodology with which the Fluence spectrum of an SPE can be well predicted from its given Peak spectrum across two orders of magnitude of proton energies, from 5 MeV to 200 MeV. Finally it is discussed how the methodology in this work can be easily applied to forecasting and nowcasting systems

    Simulation of high velocity fluidized bed reactors for the oxidative coupling of CH4. (18p.)

    No full text
    The maximum attainable hydrocarbon yield in CH4 oxidative coupling is known to be limited by secondary combustion reactions of ethylene towards undesired carbon oxides. It was then suggested that improved coupling selectivities could be obtained by employing reactor types which minimize the exposure of hydrocarbon species in zones of high O2 concentrations. Reactors operating in the high-velocity fluidization regime provide promising options for an optimum design, allowing for both large gas-solid contacting efficiencies and limited axial gas dispersion. A reactor model has been developed to simulate the performance of high-velocity fluidized bed reactors. The pressure distribution and the catalyst concentration profiles along the reactor were estimated on the basis of literature models and correlations. Results are presented under a variety of operating conditions, and conclusions are drawn on the applicability of the high-velocity fluidized bed technology in the oxidative coupling process.

    LTR analysis and signal processing for concealed explosive detection

    No full text

    Catalytic Reduction of NO and N 2

    No full text

    Advances in Bioenergy: The Sustainability Challenge

    No full text
    \ua9 2016 John Wiley & Sons, Ltd. All rights reserved. The increasing deployment of bioenergy frequently raises issues regarding the use of land and raw materials, infrastructure and logistics. In light of these sometimes conflicting interests Advances in Bioenergy provides an objective and wide-ranging overview of the technology, economics and policy of bioenergy. Offering an authoritative multidisciplinary summary of the opportunities and challenges associated with bioenergy utilization, with international researchers give up-to-date and detailed information on key issues for biomass production and conversion to energy. Key features: * Discusses different bioenergy uses such as transportation fuels, electricity and heat production. * Assesses emerging fields such as bio-based chemicals and bio-refineries. * Debates conditions for the mobilization of sustainable bioenergy supply chains and outlines governance systems to support this mobilization. * Dedicated chapters to sustainability governance and emerging tools such as certification systems and standards supporting growth of a sustainable bioenergy industry. * Considers the political, environmental, social and cultural context related to the demand for energy resources, the impact of this demand on the world around us, and the choices and behaviours of consumers. This book will be a vital reference to engineers, researchers and students that need an accessible overview of the bioenergy area. It will also be of high value for politicians, policymakers and industry leaders that need to stay up to date with the state-of-the-art science and technology in this area
    corecore