14 research outputs found

    Spatial Demogenetic Model for Studying Phenomena Observed upon Introduction of the Ragweed Leaf Beetle in the South of Russia

    No full text
    The introduction of the ragweed leaf beetle in the South of Russia in 1978–1989 was accompanied by a number of spectacular phenomena that determined the general success of the ragweed control and further dispersal and acclimatization of the beetles: (i) formation of solitary population waves (SPW), characterized by an extremely high density of the phytophage population at the narrow band of the front of a moving wave defoliating nearly all ragweed plants, and (ii) rapid, within 5-6 generations, development of flight in the leaf beetle species that in its homeland lost the ability to fly. We present here a demogenetic model capable of reproducing both these phenomena, assuming that the flight ability of a phytophage population is governed by a single diallelic locus with flight and flightless alleles that determine three genotypes of the ragweed leaf beetle. Simulation results agree well with the practical recommendation of retaining a high density of common ragweed in the release area in order to provide the necessary conditions for the initial increase of the leaf beetle population and the formation of the wave. The model confirms the earlier hypothesis that the SPW is the key factor that determines efficiency of weed biocontrol program. We demonstrate also that the formation of the wave has crucially accelerated the development of the beetles’ ability to fly

    Tunning CO2 Separation Performance of Ionic Liquids through Asymmetric Anions

    No full text
    This work aims to explore the gas permeation performance of two newly-designed ionic liquids, [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2], in supported ionic liquid membranes (SILM) configuration, as another effort to provide an overall insight on the gas permeation performance of functionalized-ionic liquids with the [C2mim]+ cation. [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] single gas separation performance towards CO2, N2, and CH4 at T = 293 K and T = 308 K were measured using the time-lag method. Assessing the CO2 permeation results, [C2mim][CF3BF3] showed an undermined value of 710 Barrer at 293.15 K and 1 bar of feed pressure when compared to [C2mim][BF4], whereas for the [C2mim][CF3SO2C(CN)2] IL an unexpected CO2 permeability of 1095 Barrer was attained at the same experimental conditions, overcoming the results for the remaining ILs used for comparison. The prepared membranes exhibited diverse permselectivities, varying from 16.9 to 22.2 for CO2/CH4 and 37.0 to 44.4 for CO2/N2 gas pairs. The thermophysical properties of the [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] ILs were also determined in the range of T = 293.15 K up to T = 353.15 K at atmospheric pressure and compared with those for other ILs with the same cation and anion’s with similar chemical moieties
    corecore