5,324 research outputs found

    A Correspondence Principle for Black Holes and Strings

    Get PDF
    For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes.Comment: 24 pages, one typo correcte

    Counting States of Black Strings with Traveling Waves

    Get PDF
    We consider a family of solutions to string theory which depend on arbitrary functions and contain regular event horizons. They describe six dimensional extremal black strings with traveling waves and have an inhomogeneous distribution of momentum along the string. The structure of these solutions near the horizon is studied and the horizon area computed. We also count the number of BPS string states at weak coupling whose macroscopic momentum distribution agrees with that of the black string. It is shown that the number of such states is given by the Bekenstein-Hawking entropy of the black string with traveling waves.Comment: 21 pages RevTex. One equation correcte

    Breaking stress of neutron star crust

    Full text link
    The breaking stress (the maximum of the stress-strain curve) of neutron star crust is important for neutron star physics including pulsar glitches, emission of gravitational waves from static mountains, and flares from star quakes. We perform many molecular dynamic simulations of the breaking stress at different coupling parameters (inverse temperatures) and strain rates. We describe our results with the Zhurkov model of strength. We apply this model to estimate the breaking stress for timescales ~1 s - 1 year, which are most important for applications, but much longer than can be directly simulated. At these timescales the breaking stress depends strongly on the temperature. For coupling parameter <200, matter breaks at very small stress, if it is applied for a few years. This viscoelastic creep can limit the lifetime of mountains on neutron stars. We also suggest an alternative model of timescale-independent breaking stress, which can be used to estimate an upper limit on the breaking stress.Comment: 5 pages, 2 figures. Accepted for publication in MNRAS Letter

    The Kramers equation simulation algorithm I. Operator analysis

    Full text link
    Using an operatorial formalism, we study the Kramers equation and its applications to numerical simulations. We obtain classes of algorithms which may be made precise at every desired order in the time step ϵ\epsilon and with a set of free parameters which can be used to reduce autocorrelations. We show that it is possible to use a global Metropolis test to restore Detailed Balance.Comment: 32 pages, REVTeX 3.0, IFUP-TH-2

    Black Holes with Multiple Charges and the Correspondence Principle

    Get PDF
    We consider the entropy of near extremal black holes with multiple charges in the context of the recently proposed correspondence principle of Horowitz and Polchinski, including black holes with two, three and four Ramond-Ramond charges. We find that at the matching point the black hole entropy can be accounted for by massless open strings ending on the D-branes for all cases except a black hole with four Ramond-Ramond charges, in which case a possible resolution in terms of brane-antibrane excitations is considered.Comment: 26 pages, harvmac, minor correction

    Localized Branes and Black Holes

    Get PDF
    We address the delocalization of low dimensional D-branes and NS-branes when they are a part of a higher dimensional BPS black brane, and the homogeneity of the resulting horizon. We show that the effective delocalization of such branes is a classical effect that occurs when localized branes are brought together. Thus, the fact that the few known solutions with inhomogeneous horizons are highly singular need not indicate a singularity of generic D- and NS-brane states. Rather, these singular solutions are likely to be unphysical as they cannot be constructed from localized branes which are brought together from a finite separation.Comment: 13 pages, RevTex, no figures, few references and comments adde

    The reality conditions for the new canonical variables of General Relativity

    Get PDF
    We examine the constraints and the reality conditions that have to be imposed in the canonical theory of 4--d gravity formulated in terms of Ashtekar variables. We find that the polynomial reality conditions are consistent with the constraints, and make the theory equivalent to Einstein's, as long as the inverse metric is not degenerate; when it is degenerate, reality conditions cannot be consistently imposed in general, and the theory describes complex general relativity.Comment: 11

    Space--Time Tradeoffs for Subset Sum: An Improved Worst Case Algorithm

    Full text link
    The technique of Schroeppel and Shamir (SICOMP, 1981) has long been the most efficient way to trade space against time for the SUBSET SUM problem. In the random-instance setting, however, improved tradeoffs exist. In particular, the recently discovered dissection method of Dinur et al. (CRYPTO 2012) yields a significantly improved space--time tradeoff curve for instances with strong randomness properties. Our main result is that these strong randomness assumptions can be removed, obtaining the same space--time tradeoffs in the worst case. We also show that for small space usage the dissection algorithm can be almost fully parallelized. Our strategy for dealing with arbitrary instances is to instead inject the randomness into the dissection process itself by working over a carefully selected but random composite modulus, and to introduce explicit space--time controls into the algorithm by means of a "bailout mechanism"

    Comments on Black Holes in Matrix Theory

    Get PDF
    The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using near-extremal D-brane thermodynamics is examined. It is found that the regime in which this approach is valid actually describes black strings stretched across the longitudinal direction, near the transition where black strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other (black hole) side of the transition is that of the zero modes of the corresponding super Yang-Mills theory. A suggestive mean field theory argument is given for the entropy of black holes in all dimensions. Consequences of the analysis for matrix theory and the holographic principle are discussed.Comment: 15 pages, harvmac, minor errors correcte

    Comment on Counting Black Hole Microstates Using String Dualities

    Full text link
    We discuss a previous attempt at a microscopic counting of the entropy of asymptotically flat non-extremal black-holes. This method used string dualities to relate 4 and 5 dimensional black holes to the BTZ black hole. We show how the dualities can be justified in a certain limit, equivalent to a near horizon limit, but the resulting spacetime is no longer asymptotically flat.Comment: 10 pages, harvmac. v(2) typo correcte
    corecore