1,005 research outputs found

    Semimetallic molecular hydrogen at pressure above 350 GPa

    Full text link
    According to the theoretical predictions, insulating molecular hydrogen dissociates and transforms to an atomic metal at pressures P~370-500 GPa. In another scenario, the metallization first occurs in the 250-500 GPa pressure range in molecular hydrogen through overlapping of electronic bands. The calculations are not accurate enough to predict which option is realized. Here we show that at a pressure of ~360 GPa and temperatures <200 K the hydrogen starts to conduct, and that temperature dependence of the electrical conductivity is typical of a semimetal. The conductivity, measured up to 440 GPa, increases strongly with pressure. Raman spectra, measured up to 480 GPa, indicate that hydrogen remains a molecular solid at pressures up to 440 GPa, while at higher pressures the Raman signal vanishes, likely indicating further transformation to a good molecular metal or to an atomic state

    Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K

    Full text link
    Two new phases of hydrogen have been discovered at room temperature in Ref.1: phase IV above 220 GPa and phase V above ~270 GPa. In the present work we have found a new phase VI at P~360 GPa and T<200 K. This phase is likely metallic as follows from the featureless Raman spectra, a strong drop in resistance, and absence of a photoconductive response. We studied hydrogen at low temperatures with the aid of Raman, infrared absorption, and electrical measurements at pressures up to 380 GPa, and have built a new phase diagram of hydrogen.Comment: 9 pages, 12 figure

    Extra Spin-Wave mode in Quantum Hall systems. Beyond the Skyrmion Limit

    Full text link
    We report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin-exciton. The existence of an extra spin mode assumes a nontrivial magnetic order at partial fillings of Landau levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.Comment: 9 pages, 4 figure

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1−x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure
    • …
    corecore