1,398 research outputs found

    Impact ionization fronts in Si diodes: Numerical evidence of superfast propagation due to nonlocalized preionization

    Full text link
    We present numerical evidence of a novel propagation mode for superfast impact ionization fronts in high-voltage Si p+p^+-nn-n+n^+ structures. In nonlinear dynamics terms, this mode corresponds to a pulled front propagating into an unstable state in the regime of nonlocalized initial conditions. Before the front starts to travel, field-ehanced emission of electrons from deep-level impurities preionizes initially depleted nn base creating spatially nonuniform free carriers profile. Impact ionization takes place in the whole high-field region. We find two ionizing fronts that propagate in opposite directions with velocities up to 10 times higher than the saturated drift velocity.Comment: 3 pages, 4 figure

    Theory of superfast fronts of impact ionization in semiconductor structures

    Get PDF
    We present an analytical theory for impact ionization fronts in reversely biased p^{+}-n-n^{+} structures. The front propagates into a depleted n base with a velocity that exceeds the saturated drift velocity. The front passage generates a dense electron-hole plasma and in this way switches the structure from low to high conductivity. For a planar front we determine the concentration of the generated plasma, the maximum electric field, the front width and the voltage over the n base as functions of front velocity and doping of the n base. Theory takes into account that drift velocities and impact ionization coefficients differ between electrons and holes, and it makes quantitative predictions for any semiconductor material possible.Comment: 18 pagers, 10 figure

    To the practical design of the optical lever intracavity topology of gravitational-wave detectors

    Full text link
    The QND intracavity topologies of gravitational-wave detectors proposed several years ago allow, in principle, to obtain sensitivity significantly better than the Standard Quantum Limit using relatively small anount of optical pumping power. In this article we consider an improved more ``practical'' version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the Discrete Sampling Variation Measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal ``asymptotic case'' for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.Comment: 27 pages, 6 figure

    Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data

    Full text link
    We describe a new pipeline used to analyze the data from the fifth science run (S5) of the LIGO detectors to search for continuous gravitational waves from isolated spinning neutron stars. The method employed is based on the Hough transform, which is a semi-coherent, computationally efficient, and robust pattern recognition technique. The Hough transform is used to find signals in the time-frequency plane of the data whose frequency evolution fits the pattern produced by the Doppler shift imposed on the signal by the Earth's motion and the pulsar's spin-down during the observation period. The main differences with respect to previous Hough all-sky searches are described. These differences include the use of a two-step hierarchical Hough search, analysis of coincidences among the candidates produced in the first and second year of S5, and veto strategies based on a χ2\chi^2 test.Comment: 7 pages, 2 figures, Amaldi08 proceedings, submitted to JPC

    Dual-Resonator Speed Meter for a Free Test Mass

    Get PDF
    A description and analysis are given of a ``speed meter'' for monitoring a classical force that acts on a test mass. This speed meter is based on two microwave resonators (``dual resonators''), one of which couples evanescently to the position of the test mass. The sloshing of the resulting signal between the resonators, and a wise choice of where to place the resonators' output waveguide, produce a signal in the waveguide that (for sufficiently low frequencies) is proportional to the test-mass velocity (speed) rather than its position. This permits the speed meter to achieve force-measurement sensitivities better than the standard quantum limit (SQL), both when operating in a narrow-band mode and a wide-band mode. A scrutiny of experimental issues shows that it is feasible, with current technology, to construct a demonstration speed meter that beats the wide-band SQL by a factor 2. A concept is sketched for an adaptation of this speed meter to optical frequencies; this adaptation forms the basis for a possible LIGO-III interferometer that could beat the gravitational-wave standard quantum limit h_SQL, but perhaps only by a factor 1/xi = h_SQL/h ~ 3 (constrained by losses in the optics) and at the price of a very high circulating optical power --- larger by 1/xi^2 than that required to reach the SQL.Comment: RevTex: 13 pages with 4 embedded figures (two .eps format and two drawn in TeX); Submitted to Physical Review
    corecore