121 research outputs found

    Fourth order nematic elasticity and modulated nematic phases: a poor man's approach

    Full text link
    We propose an extension of Frank-Oseen's elastic energy for bulk nematic liquid crystals which is based on the hypothesis that the fundamental deformations allowed in nematic liquid crystals are splay, twist and bend. The extended elastic energy is a fourth order form in the fundamental deformations. The existence of bulk spontaneous modulated or deformed nematic liquid crystal ground states is investigated. The analysis is limited to bulk nematic liquid crystals in the absence of limiting surfaces and/or external fields. The non deformed ground state is stable only when Frank-Oseen's elastic constants are positive. In case where at least one of them is negative, the ground state becomes deformed. The analysis of the stability of the deformed states in the space of the elastic parameters allows to characterize different types of deformed nematic phases. Some of them are new nematic phases, for instance a twist -- splay nematic phase is predicted. Inequalities between second order elastic constants which govern the stability of the twist--bend and splay--bend state are obtained

    Influence of Homeotropic Anchoring Walls upon Nematic and Smectic Phases

    Full text link
    McMillan liquid crystal model sandwiched between strong homeotropic anchoring walls is studied. Phase transitions between isotropic, nematic, and smectic A phases are investigated for wide ranges of an interaction parameter and of the system thickness. It is confirmed that the anchoring walls induce an increase in transition temperatures, dissappearance of phase transitions, and an appearance of non-spontaneous nematic phase. The similarity between influence of anchoring walls and that of external fields is discussed.Comment: 5 pages, 6 figure

    Isotropic, Nematic and Smectic A Phase Behaviour in a Fictitious Field

    Full text link
    Phase behaviours of liquid crystals under external fields, conjugate to the nematic order and smectic order, are studied within the framework of mean field approximation developed by McMillan. It is found that phase diagrams, of temperature vs interaction parameter of smectic A order, show several topologically different types caused by the external fields. The influences of the field conjugate to the smectic A phase, which is fictitious field, are precisely discussed.Comment: To be published in J. Phys. Soc. Jpn. vol.73 No.

    Nanometric pitch in modulated structures of twist-bend nematic liquid crystals

    Full text link
    The extended Frank elastic energy density is used to investigate the existence of a stable periodically modulate structure that appears as a ground state exhibiting a twist-bend molecular arrangement. For an unbounded sample, we show that the twist-bend nematic phase NTBN_{TB} is characterized by a heliconical structure with a pitch in the nano-metric range, in agreement with experimental results. For a sample of finite thickness, we show that the wave vector of the stable periodic structure depends not only on the elastic parameters but also on the anchoring energy, easy axis direction, and the thickness of the sample.Comment: 11 page

    Instability patterns in ultrathin nematic films: comparison between theory and experiment

    Full text link
    Motivated by recent experimental observations [U. Delabre et al, Langmuir 24, 3998, 2008] we reconsider an instability of ultrathin nematic films, spread on liquid substrates. Within a continuum elastic theory of liquid crystals, in the harmonic approximation, we find an analytical expressions for the critical thickness as well as for the critical wavenumber, characterizing the onset of instability towards the stripe phase. Comparing theoretical predictions with experimental observations, we establish the utility of surface-like term such as an azimuthal anchoring.Comment: 6 pages, 3 figures, LaTeX macros EPL draft, accepted for publication in EP
    • …
    corecore