4,416 research outputs found

    Partitioning technique for a discrete quantum system

    Full text link
    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.Comment: 7 pages, 2 figure

    A Bayesian measurement error model for two-channel cell-based RNAi data with replicates

    Full text link
    RNA interference (RNAi) is an endogenous cellular process in which small double-stranded RNAs lead to the destruction of mRNAs with complementary nucleoside sequence. With the production of RNAi libraries, large-scale RNAi screening in human cells can be conducted to identify unknown genes involved in a biological pathway. One challenge researchers face is how to deal with the multiple testing issue and the related false positive rate (FDR) and false negative rate (FNR). This paper proposes a Bayesian hierarchical measurement error model for the analysis of data from a two-channel RNAi high-throughput experiment with replicates, in which both the activity of a particular biological pathway and cell viability are monitored and the goal is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting cell activity. Simulation studies demonstrate the flexibility and robustness of the Bayesian method and the benefits of having replicates in the experiment. This method is illustrated through analyzing the data from a RNAi high-throughput screening that searches for cellular factors affecting HCV replication without affecting cell viability; comparisons of the results from this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Response Function of the Fractional Quantized Hall State on a Sphere II: Exact Diagonalization

    Full text link
    We study the excitation spectra and the dynamical structure factor of quantum Hall states in a finite size system through exact diagonalization. Comparison is made between the numerical results so obtained and the analytic results obtained from a modified RPA in the preceding companion paper. We find good agreement between the results at low energies.Comment: 22 pages (REVTeX 3.0). 10 figures available on request. Complete postscript file (including figures) for this paper are available on the World Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0

    Study of BKρ,KωB\to K^* \rho, K^*\omega Decays with Polarization in Perturbative QCD Approach

    Full text link
    The BKρB \to K^{*}\rho, Kω K^{*}\omega decays are useful to determine the CKM angle ϕ3=γ\phi_3=\gamma. Their polarization fractions are also interesting since the polarization puzzle of the BϕKB\to \phi K^* decay. We study these decays in the perturbative QCD approach based on kTk_T factorization. After calculating of the non-factorizable and annihilation type contributions, in addition to the conventional factorizable contributions, we find that the contributions from the annihilation diagrams are crucial. They give dominant contribution to the strong phases and suppress the longitudinal polarizations. Our results agree with the current existing data. We also predict a sizable direct CP asymmetries in B+K+ρ0B^+ \to K^{*+}\rho^0, B0K+ρB^0 \to K^{*+}\rho^-, and B+K+ωB^+ \to K^{*+}\omega decays, which can be tested by the oncoming measurements in the B factory experiments.Comment: 15 pages, latex, including 4 figure

    The edge state network model and the global phase diagram

    Full text link
    The effects of randomness are investigated in the fractional quantum Hall systems. Based on the Chern-Simons Ginzburg-Landou theory and considering relevant quasi-particle tunneling, the edge state network model for the hierarchical state is introduced and the plateau-plateau transition and liquid-insulator transition are discussed. This model has duality which corresponds to the relation of the quantum Hall liquid phase and the Hall insulating phase and reveals a mechanism in the weak coupling regime.Comment: 5 page RevTe

    Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations

    Full text link
    We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN2_{2}, OsN2_{2} and OsO2_{2} are mechanically stable. In particular OsN2_{2} has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN2_{2} is metallic. The high bulk modulus is owing to the strong covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006

    Theory of interlayer tunneling in bi-layer quantum Hall ferromagnets

    Full text link
    Spielman et al. have recently observed a large zero-bias peak in the tunnel conductance of a bi-layer system in a quantum Hall ferromagnet state. We argue that disorder-induced topological defects in the pseudospin order parameter limit the peak size and destroy the predicted Josephson effect. We predict that the peak would be split and shifted by an in-plane magnetic field in a way that maps the dispersion relation of the ferromagnet's Goldstone mode. We also predict resonant structures in the DC I-V characteristic under bias by an {\em ac} electric field.Comment: 4 pages, no figures, submitted to Physical Review Letter

    Comparing the contents, functions and neonicotinoid take-up between floral and extrafloral nectar within a single species (Hemerocallis citrina Baroni)

    Get PDF
    BACKGROUND AND AIMS: Many angiosperms can secrete both floral (FN) and extrafloral (EFN) nectar. However, much remains unclear about how EFN and FN differ in secretion, composition and ecological function, especially when both FN and EFN are secreted on flowers of the same species. METHODS: Hemerocallis citrina flowers secrete both FN and EFN. The FN and EFN traits including volume, presentation pattern and temporal rhythms of secretion were compared by field observation. Sugar and amino acid contents were analysed using regular biochemical methods, whereas the proteome was investigated by combined gel-based and gel-free approaches. Animal feeders on FN and EFN were investigated by field observation. Hemerocallis citrina plants were exposed by soil drenching to two systemic insecticides, acetamiprid and imidacloprid, and the concentration of these in FN and EFN was measured by ultra-high performance liquid chromatography coupled with mass spectrometry. KEY RESULTS: Hemerocallis citrina FN was concentrated and sucrose dominant, secreted in the mature flower tube and served as a reward for pollinators. Conversely, EFN was hexose rich, more dilute and less rich in sugar and amino acids. EFN was secreted on the outside of developing floral buds, and was likely to attract predatory animals for defence. EFN had fewer phenolics, but more pathogenesis-related components, such as chitinase and glucanase. A significantly different proteomic profile and enzymatic activities between FN and EFN suggest that they had different biosynthesis mechanisms. Both neonicotinoid insecticides examined became present in both nectar types soon after application, but in greater concentration within EFN; EFN also attracted a wider range of insect species than FN. CONCLUSIONS: Hemerocallis citrina FN and EFN differed in production, composition and ecological function. The EFN pathway could be a significant way for neonicotinoids to enter the wild food chain, and must be considered when evaluating the risks to the environment of other systemic insecticides

    Large-NN nonlinear σ\sigma models on R2×S1R^2\times S^1

    Full text link
    The large-NN nonlinear O(N)O(N), CPN1CP^{N-1} σ\sigma models are studied on R2×S1R^2 \times S^1. The NN-components scalar fields of the models are supposed to acquire a phase ei2πδe^{i2\pi\delta} (0δ<1)(0\leq \delta <1), along the circulation of the circle, S1S^1. We evaluate the effective potentials to the leading order of the 1/N1/N expansion. It is shown that, on R2×S1R^2\times S^1 the O(N)O(N) model has rich phase structure while the phase of CPN1CP^{N-1} model is just that of the model at finite temperature.Comment: 12 pages(LaTex

    On gauge-invariant Green function in 2+1 dimensional QED

    Full text link
    Both the gauge-invariant fermion Green function and gauge-dependent conventional Green function in 2+1 2+1 dimensional QED are studied in the large N N limit. In temporal gauge, the infra-red divergence of gauge-dependent Green function is found to be regulariable, the anomalous dimension is found to be η=643π2N \eta= \frac{64}{3 \pi^{2} N} . This anomalous dimension was argued to be the same as that of gauge-invariant Green function. However, in Coulomb gauge, the infra-red divergence of the gauge-dependent Green function is found to be un-regulariable, anomalous dimension is even not defined, but the infra-red divergence is shown to be cancelled in any gauge-invariant physical quantities. The gauge-invariant Green function is also studied directly in Lorentz covariant gauge and the anomalous dimension is found to be the same as that calculated in temporal gauge.Comment: 8 pages, 6 figures, to appear in Phys. Rev.
    corecore