3,247 research outputs found

    A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution

    Full text link
    We discuss excess noise contributions of a practical balanced homodyne detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution (QKD). We point out the key generated from the original realistic model of GMCS QKD may not be secure. In our refined realistic model, we take into account excess noise due to the finite bandwidth of the homodyne detector and the fluctuation of the local oscillator. A high speed balanced homodyne detector suitable for GMCS QKD in the telecommunication wavelength region is built and experimentally tested. The 3dB bandwidth of the balanced homodyne detector is found to be 104MHz and its electronic noise level is 13dB below the shot noise at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate of a GMCS QKD experiment with this homodyne detector is expected to reach Mbits/s over a few kilometers.Comment: 22 pages, 11 figure

    Network Biology of Tumor Stem-like Cells Identified a Regulatory Role of CBX5 in Lung Cancer

    Get PDF
    Mounting evidence links cancers possessing stem-like properties with worse prognosis. Network biology with signal processing mechanics was explored here using expression profiles of a panel of tumor stem-like cells (TSLCs). The profiles were compared to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), for the identification of gene chromobox homolog 5, CBX5, as a potential target for lung cancer. CBX5 was found to regulate the stem-like properties of lung TSLCs and was predictive of lung cancer prognosis. The investigation was facilitated by finding target genes based on modeling epistatic signaling mechanics via a predictive and scalable network-based survival model. Topologically-weighted measurements of CBX5 were synchronized with those of BIRC5, DNMT1, E2F1, ESR1, MLH1, MSH2, RB1, SMAD1 and TAF5. We validated our findings in another Taiwanese lung cancer cohort, as well as in knockdown experiments using sh-CBX5 RNAi both in vitro and in vivo.National Science Council (China) (NSC grant 100-2325-B-010-010-MY3/98-2314-B-010-024-MY2/97-3111-B075-001-MY3/ 96-2314-075-056-MY3)National Yang-Ming University (Ministry of Education, Aim for the Top University Plan: 96ADD122, 96ADD125, 96ADT191, 97ACD113, 97ACT302, 98ACT302, 98ACD107, 98ACT192 and Brain Research Center-3T-MRI project)))Taipei Veterans General Hospital (98-C1-099/E1-003/ER3-001)Taipei Veterans General Hospital (Joint Projects of VGHUST (98-G6-6/ 98-P1-01/99-P6-39)Chi Mei Medical Center (CMYM9801)Yen-Tjing-Ling Medical Foundation (96/97/98)Taipei City Hospital (96-002-62-092)Technology Development Program for Academia (TDPA; 98-EC-17-A-19-S2-0107)Taiwan. Department of Industrial Technology, Ministry of Economic AffairsNational Science Council (China) (NSC 101-2325-B-010 -009)Taiwan. Department of Health. Cancer Research Center of Excellence (DOH101-TD-C-111-007

    The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters

    Get PDF
    [[abstract]]The Fe-coating and H2-annealed processes markedly increased the conductivity and enhanced the surface electron field emission (s-EFE) properties for the diamondfilms. The enhancement on the s-EFE properties for the diamondfilms is presumably owing to the formation of nano-graphite clusters on the surface of the films via the Fe-to-diamond interaction. However, the extent of enhancement varied with the granular structure of the diamondfilms. For the microcrystalline (MCD)films, the s-EFE process can be turned on at (E0)MCD = 1.9 V/μm, achieving a large s-EFE current density of (Je)MCD = 315 μA/cm2 at an applied field of 8.8 V/μm. These s-EFE properties are markedly better than those for Fe-coated/annealed ultrananocrystalline diamond(UNCD)films with (E0)UNCD = 2.0 V/μm and (Je)UNCD = 120 μA/cm2. The transmission electron microscopy showed that the nano-graphite clusters formed an interconnected network for MCDfilms that facilitated the electron transport more markedly, as compared with the isolated nano-graphitic clusters formed at the surface of the UNCDfilms. Therefore, the Fe-coating/annealing processes improved the s-EFE properties for the MCDfilms more markedly than that for the UNCDfilms. The understanding on the distribution of the nano-clusters is of critical importance in elucidating the authentic factor that influences the s-EFE properties of the diamondfilms. Such an understanding is possible only through the 3D-tomographic investigations.[[journaltype]]國外[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]US

    Ventricular divergence correlates with epicardial wavebreaks and predicts ventricular arrhythmia in isolated rabbit hearts during therapeutic hypothermia

    Get PDF
    INTRODUCTION: High beat-to-beat morphological variation (divergence) on the ventricular electrogram during programmed ventricular stimulation (PVS) is associated with increased risk of ventricular fibrillation (VF), with unclear mechanisms. We hypothesized that ventricular divergence is associated with epicardial wavebreaks during PVS, and that it predicts VF occurrence. METHOD AND RESULTS: Langendorff-perfused rabbit hearts (n = 10) underwent 30-min therapeutic hypothermia (TH, 30°C), followed by a 20-min treatment with rotigaptide (300 nM), a gap junction modifier. VF inducibility was tested using burst ventricular pacing at the shortest pacing cycle length achieving 1:1 ventricular capture. Pseudo-ECG (p-ECG) and epicardial activation maps were simultaneously recorded for divergence and wavebreaks analysis, respectively. A total of 112 optical and p-ECG recordings (62 at TH, 50 at TH treated with rotigaptide) were analyzed. Adding rotigaptide reduced ventricular divergence, from 0.13±0.10 at TH to 0.09±0.07 (p = 0.018). Similarly, rotigaptide reduced the number of epicardial wavebreaks, from 0.59±0.73 at TH to 0.30±0.49 (p = 0.036). VF inducibility decreased, from 48±31% at TH to 22±32% after rotigaptide infusion (p = 0.032). Linear regression models showed that ventricular divergence correlated with epicardial wavebreaks during TH (p<0.001). CONCLUSION: Ventricular divergence correlated with, and might be predictive of epicardial wavebreaks during PVS at TH. Rotigaptide decreased both the ventricular divergence and epicardial wavebreaks, and reduced the probability of pacing-induced VF during TH

    Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Get PDF
    AbstractBackgroundGlioblastoma multiforme (GBM) is the most lethal type of adult brain cancer and performs outrageous growth and resistance regardless of adjuvant chemotherapies, eventually contributing to tumor recurrence and poor outcomes. Considering the common heterogeneity of cancer cells, the imbalanced regulatory mechanism could be switched on/off and contribute to drug resistance. Moreover, the subpopulation of GBM cells was recently discovered to share similar phenotypes with neural stem cells. These cancer stem cells (CSCs) promote the potency of tumor initiation. As a result, targeting of glioma stem cells has become the dominant way of improving the therapeutic outcome against GBM and extending the life span of patients. Among the biomarkers of CSCs, CD-133 (prominin-1) has been known to effectively isolate CSCs from cancer population, including GBM; however, the underlying mechanism of how stemness genes manipulate CSC-associated phenotypes, such as tumor initiation and relapse, is still unclear.MethodsTumorigenicity, drug resistance and embryonic stem cell markers were examined in primary CD133-positive (CD133+) GBM cells and CD133+ subpopulation. Stemness signature of CD133+ GBM cells was identified using microarray analysis. Stem cell potency, tumorigenicity and drug resistance were also tested in differential expression of SOX2 in GBM cells.ResultsIn this study, high tumorigenic and drug resistance was noticed in primary CD-133+ GBM cells; meanwhile, plenty of embryonic stem cell markers were also elevated in the CD-133+ subpopulation. Using microarray analysis, we identified SOX2 as the most enriched gene among the stemness signature in CD133+ GBM cells. Overexpression of SOX2 consistently enhanced the stem cell potency in the GBM cell lines, whereas knockdown of SOX2 dramatically withdrew CD133 expression in CD133+ GBM cells. Additionally, we silenced SOX2 expression using RNAi system, which abrogated the ability of tumor initiation as well as drug resistance of CD133+ GBM cells, suggesting that SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells.ConclusionSOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers

    Feasibility of quantum key distribution through dense wavelength division multiplexing network

    Full text link
    In this paper, we study the feasibility of conducting quantum key distribution (QKD) together with classical communication through the same optical fiber by employing dense-wavelength-division-multiplexing (DWDM) technology at telecom wavelength. The impact of the classical channels to the quantum channel has been investigated for both QKD based on single photon detection and QKD based on homodyne detection. Our studies show that the latter can tolerate a much higher level of contamination from the classical channels than the former. This is because the local oscillator used in the homodyne detector acts as a "mode selector" which can suppress noise photons effectively. We have performed simulations based on both the decoy BB84 QKD protocol and the Gaussian modulated coherent state (GMCS) QKD protocol. While the former cannot tolerate even one classical channel (with a power of 0dBm), the latter can be multiplexed with 38 classical channels (0dBm power each channel) and still has a secure distance around 10km. Preliminary experiment has been conducted based on a 100MHz bandwidth homodyne detector.Comment: 18 pages, 5 figure

    Bmi-1 Regulates Snail Expression and Promotes Metastasis Ability in Head and Neck Squamous Cancer-Derived ALDH1 Positive Cells

    Get PDF
    Recent studies suggest that ALDH1 is a putative marker for HNSCC-derived cancer stem cells. However, the regulation mechanisms that maintain the stemness and metastatic capability of HNSCC-ALDH1+ cells remain unclear. Initially, HNSCC-ALDH1+ cells from HNSCC patient showed cancer stemness properties, and high expression of Bmi1 and Snail. Functionally, tumorigenic properties of HNSCC-ALDH1+ cells could be downregulated by knockdown of Bmi-1. Overexpression of Bmi-1 altered in expression property ALDH1− cells to that of ALDH1+ cells. Furthermore, knockdown of Bmi-1 enhanced the radiosensitivity of radiation-treated HNSCC-ALDH1+ cells. Moreover, overexpression of Bmi-1 in HNSCC-ALDH1− cells increased tumor volume and number of pulmonary metastatic lesions by xenotransplant assay. Importantly, knock-down of Bmi1 in HNSCC-ALDH1+ cells significantly decreased distant metastases in the lungs. Clinically, coexpression of Bmi-1/Snail/ALDH1 predicted the worst prognosis in HNSCC patients. Collectively, our data suggested that Bmi-1 plays a key role in regulating Snail expression and cancer stemness properties of HNSCC-ALDH1+ cells

    Levels and values of circulating endothelial progenitor cells, soluble angiogenic factors, and mononuclear cell apoptosis in liver cirrhosis patients

    Get PDF
    BACKGROUND: The roles of circulating endothelial progenitor cell (EPC) and mononuclear cell apoptosis (MCA) in liver cirrhosis (LC) patients are unknown. Moreover, vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α are powerful endogenous substances enhancing EPC migration into circulation. We assessed the level and function of EPCs [CD31/CD34 (E(1)), KDR/CD34 (E(2)), CXCR4/CD34 (E(3))], levels of MCA, VEGF and SDF-1α in circulation of LC patients. METHODS: Blood sample was prospectively collected once for assessing EPC level and function, MCA, and plasma levels of VEGF and SDF-1α using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively, in 78 LC patients and 25 age- and gender-matched healthy controls. RESULTS: Number of EPCs (E(1), E(2), E(3)) was lower (all p < 0.0001), whereas SDF-1α level and MCA were higher (p < 0.001) in study patients compared with healthy controls. Number of EPCs (E(2), E(3)) was higher but MCA was lower (all p < 0.05) in Child's class A compared with Child's class B and C patients, although no difference in VEGF and SDF-1α levels were noted among these patients. Chronic hepatitis B and esophageal varices bleeding were independently, whereas chronic hepatitis C, elevated aspartate aminotransferase (AST), and decompensated LC were inversely and independently correlated with circulating EPC level (all p < 0.03). Additionally, angiogenesis and transwell migratory ability of EPCs were reduced in LC patients than in controls (all p < 0.001). CONCLUSION: The results of this study demonstrated that level, angiogenic capacity, and function of circulating EPCs were significantly reduced, whereas plasma levels of SDF-1α and circulating MCA were substantially enhanced in cirrhotic patients
    corecore