362 research outputs found

    Thermal conductivity in the vortex state of d-wave superconductors

    Get PDF
    We present the results of a microscopic calculation of the longitudinal thermal conductivity of quasiparticles, κxx\kappa_{xx}, in a 2D d-wave superconductor in the vortex state. Our approach takes into account both impurity scattering and a contribution to the thermal transport lifetime due to the scattering of quasiparticles off of vortices. We compare the results with the experimental measurements on high-Tc_c cuprates and organic superconductors.Comment: 2 pages, submitted to proceedings of M2S-HTSC-VI (Houston

    Impurity-Induced Quasiparticle Transport and Universal Limit Wiedemann-Franz Violation in d-Wave Superconductors

    Full text link
    Due to the node structure of the gap in a d-wave superconductor, the presence of impurities generates a finite density of quasiparticle excitations at zero temperature. Since these impurity-induced quasiparticles are both generated and scattered by impurities, prior calculations indicate a universal limit (\Omega -> 0, T -> 0) where the transport coefficients obtain scattering-independent values, depending only on the velocity anisotropy v_f/v_2. We improve upon prior results, including the contributions of vertex corrections and Fermi liquid corrections in our calculations of universal limit electrical, thermal, and spin conductivity. We find that while vertex corrections modify electrical conductivity and Fermi liquid corrections renormalize both electrical and spin conductivity, only thermal conductivity maintains its universal value, independent of impurity scattering or Fermi liquid interactions. Hence, low temperature thermal conductivity measurements provide the most direct means of obtaining the velocity anisotropy for high T_c cuprate superconductors.Comment: 22 pages, 6 figures; revised version to be published in Phys Rev

    Quasiparticle thermal conductivity in the vortex state of high-Tc_c cuprates

    Get PDF
    We present the results of a microscopic calculation of the longitudinal thermal conductivity, κ\kappa, of a d-wave superconductor in the mixed state. Our results show an increase in the thermal conductivity with the applied field at low temperatures, and a decrease followed by a nearly field independent κ(H)\kappa(H) at higher temperatures, in qualitative agreement with the experimental results. We discuss the relationship between the slope of the superconducting gap and the plateau in κ(H)\kappa(H).Comment: 4 pages, 3 figures, very minor changes to text, published versio

    Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability

    Full text link
    We show the existence of a region in the parameter space that defines the field dynamics in a Fabry-Perot cylindrical cavity, where three output stable stationary states of the light are possible for a given localized incident field. Two of these states do not preserve the bilateral (i.e. left-right) symmetry of the entire system. These broken-symmetry states are the high-transmission nonlinear modes of the system. We also discuss how to excite these states.Comment: 5 pages, 5 figure

    Low-Energy Quasiparticles in Cuprate Superconductors: A Quantitative Analysis

    Full text link
    A residual linear term is observed in the thermal conductivity of optimally-doped Bi-2212 at very low temperatures whose magnitude is in excellent agreement with the value expected from Fermi-liquid theory and the d-wave energy spectrum measured by photoemission spectroscopy, with no adjustable parameters. This solid basis allows us to make a quantitative analysis of thermodynamic properties at low temperature and establish that thermally-excited quasiparticles are a significant, perhaps even the dominant mechanism in suppressing the superfluid density in cuprate superconductors Bi-2212 and YBCO.Comment: Revised version with additional page, figure, table and reference; to appear in Physical Review B (1 August 2000

    Fermi liquid interactions and the superfluid density in d-wave superconductors

    Full text link
    We construct a phenomenological superfluid Fermi liquid theory for a two-dimensional d-wave superconductor on a square lattice, and study the effect of quasiparticle interactions on the superfluid density. Using simple models for the dispersion and the Landau interaction function, we illustrate the deviation of these results from those for the isotropic superfluid. This allows us to reconcile the value and doping dependence of the superfluid density slope at low temperature obtained from penetration depth measurements, with photoemission data on nodal quasiparticles.Comment: 5 latex pages, 1 eps-figure. submitted to PR

    High-Field Quasiparticle Tunneling in Bi_2Sr_2CaCu_2O_8+delta: Negative Magnetoresistance in the Superconducting State

    Full text link
    We report on the c-axis resistivity rho_c(H) in Bi_2Sr_2CaCu_2O_{8+\delta} that peaks in quasi-static magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity \sigma_c (H), we find that the negative slope of \rho_c(H) above the peak is due to quasiparticle tunneling conductivity \sigma_q(H) across the CuO_2 layers below H_{c2}. At high fields (a) \sigma_q(H) grows linearly with H, and (b) \rho_c(T) tends to saturate (sigma_c \neq 0) as T->0, consistent with the scattering at the nodes of the d-gap. A superlinear sigma_q(H) marks the normal state above T_c.Comment: 4p., 5 fig. (.eps), will be published in Phys. Rev. Let

    Low temperature superfluid stiffness of d-wave superconductor in a magnetic field

    Full text link
    The temperature and field dependence of the superfluid density ρs\rho_s in the vortex state of a d-wave superconductor are calculated using a microscopic model in the quasiclassical approximation. We show that at temperatures below T^{*} \varpropto \sqrt{H}$, the linear T dependence of rho_s crosses over to a T^2 dependence differently from the behavior of the effective penetration depth, lambda_eff^{-2}(T). We point out that the expected dependences could be probed by a mutual-inductance technique experiment.Comment: 4 pages, RevTeX4, 2 EPS figures; minor revisions made and 1 new reference added; final version published in PR

    Interlayer Quasiparticle Transport in the Vortex State of Josephson Coupled Superconductors

    Get PDF
    We calculate the dependence of the interlayer quasiparticle conductivity, σq\sigma_q, in a Josephson coupled d-wave superconductor on the magnetic field B||c and the temperature T. We consider a clean superconductor with resonant impurity scattering and a dominant coherent interlayer tunneling. When pancake vortices in adjacent layers are weakly correlated at low T the conductivity increases sharply with B before reaching an extended region of slow linear growth, while at high T it initially decreases and then reaches the same linear regime. For correlated pancakes σq\sigma_q increases much more strongly with the applied field.Comment: 4 pages, 3 figure

    Transcription of Muscle Actin Genes by a Nuclear Form of Mitochondrial RNA Polymerase

    Get PDF
    Actins are the major constituent of the cytoskeleton. In this report we present several lines of evidence that muscle actin genes are transcribed by nuclear isoform of mitochondrial RNA polymerase (spRNAP-IV) whereas the non-muscle actin genes are transcribed by the conventional RNA polymerase II (PolII). We show that mRNA level of muscle actin genes are resistant to PolII inhibitors α-amanitin and triptolide as well as insensitive to knockdown of PolII but not to knockdown of spRNAP-IV, in contrast to non-muscle actin genes in several cell lines. Similar results are obtained from nuclear run-on experiments. Reporter assay using muscle actin or PolII gene promoters also demonstrate the differential sensitivity to PolII inhibitors. Finally, chromatin-immunoprecipitation experiment was used to demonstrate that spRNAP-IV is associated with promoter of muscle actin genes but not with that of non-muscle gene and knockdown of spRNAP-IV depleted this polymerase from muscle actin genes. In summary, these experiments indicate that the two types of actin genes are transcribed by different transcription machinery. We also found that POLRMT gene is transcribed by spRNAP-IV, and actin genes are sensitive to oligomycin, suggesting a transcription coupling between mitochondria and nucleus
    corecore