34,480 research outputs found

    Local Physical Coodinates from Symplectic Projector Method

    Get PDF
    The basic arguments underlying the symplectic projector method are presented. By this method, local free coordinates on the constrait surface can be obtained for a broader class of constrained systems. Some interesting examples are analyzed.Comment: 8 page

    New family of potentials with analytical twiston-like solutions

    Full text link
    In this letter we present a new approach to find analytical twiston models. The effective two-field model was constructed by a non-trivial combination of two one field systems. In such an approach we successfully build analytical models which are satisfied by a combination of two defect-like solutions, where one is responsible to twist the molecular chain by 180 0180^{\,0}, while the other implies in a longitudinal movement. Such a longitudinal movement can be fitted to have the size of the distance between adjacent molecular groups. The procedure works nicely and can be used to describe the dynamics of several other molecular chains.Comment: 7 pages, 3 figure

    Identifying wave packet fractional revivals by means of information entropy

    Full text link
    Wave packet fractional revivals is a relevant feature in the long time scale evolution of a wide range of physical systems, including atoms, molecules and nonlinear systems. We show that the sum of information entropies in both position and momentum conjugate spaces is an indicator of fractional revivals by analyzing three different model systems: (i)(i) the infinite square well, (ii)(ii) a particle bouncing vertically against a wall in a gravitational field, and (iii)(iii) the vibrational dynamics of hydrogen iodide molecules. This description in terms of information entropies complements the usual one in terms of the autocorrelation function

    Is the effect of birth weight on early breast cancer mediated through childhood growth?

    Get PDF

    Many-particle confinement by constructed disorder and quantum computing

    Full text link
    Many-particle confinement (localization) is studied for a 1D system of spinless fermions with nearest-neighbor hopping and interaction, or equivalently, for an anisotropic Heisenberg spin-1/2 chain. This system is frequently used to model quantum computers with perpetually coupled qubits. We construct a bounded sequence of site energies that leads to strong single-particle confinement of all states on individual sites. We show that this sequence also leads to a confinement of all many-particle states in an infinite system for a time that scales as a high power of the reciprocal hopping integral. The confinement is achieved for strong interaction between the particles while keeping the overall bandwidth of site energies comparatively small. The results show viability of quantum computing with time-independent qubit coupling.Comment: An invited paper for the topical issue of J. Opt. B on quantum contro

    Estudos para definição de meios de cultura e métodos de desinfestação de explantes de plantas adultas de erva-mate (Ilex paraguarienses St. Hill).

    Get PDF
    Este trabalho é o resultado de uma série de estudos objetivando avaliar os efeitos de diferentes tratamentos (desinfestantes, antioxidantes, bactericidas, reguladores de crescimento e meios de cultura) na desinfestação e no controle da oxidação para o estabelecimento in vitro de explantes de erva-mate (Ilex paraguariensis), procedentes de árvores de 8 anos de idade, de Colombo - PR. A avaliação dos experimentos foi realizada sete dias após sua introdução in vitro, sendo verificadas grandes taxas gerais de contaminação por fungos e bactérias, bem como, a ocorrência de oxidação nos explantes. De forma geral, conclui-se que o hipoclorito de sódio a 1,5%, com tempo de imersão de 30 minutos e o etanol (álcool 70%) a dois minutos em explantes oriundos de brotações de mudas enxertadas foram os que proporcionaram os melhores resultados.Secão: Conservação, Melhoramento e Multiplicação. Feira do Agronegócio da Erva-mate, 1., 2003, Chapecó. Integrar para promover o agronegócio da erva-mate

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200
    • …
    corecore