558 research outputs found

    HASH(0x563d43f9e480)

    Get PDF
    HASH(0x563d43f23d80

    HASH(0x563d43e734f0)

    Get PDF
    HASH(0x563d44036c08)HASH(0x563d43fb6c70

    HASH(0x563d43f95f78)

    Get PDF
    HASH(0x563d43e48e00)HASH(0x563d43f9dbc0

    HASH(0x563d440dcea0)

    Get PDF
    HASH(0x563d4407a270)HASH(0x563d4412f6b0

    HASH(0x563d4404ac80)

    Get PDF
    HASH(0x563d43fb6ef8

    HASH(0x563d4412e800)

    Get PDF
    HASH(0x563d4403b530)HASH(0x563d4402a118

    HASH(0x563d44119a80)

    Get PDF
    HASH(0x563d43e27db0)HASH(0x563d44003f78

    Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity

    Full text link
    We investigate the nature of the long-period radial velocity variations in Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial velocity measurements for Alpha Tau spanning over 30 years. An examination of the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations. Our radial velocity data show that the long-period, low amplitude radial velocity variations are long-lived and coherent. Furthermore, Halpha equivalent width measurements and Hipparcos photometry show no significant variations with this period. Another investigation of this star established that there was no variability in the spectral line shapes with the radial velocity period. An orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e = 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s. Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of the companion, an additional period of ~ 520 d is found in the radial velocity data, but only in some time spans. A similar period is found in the variations in the equivalent width of Halpha and Ca II. Variations at one-third of this period are also found in the spectral line bisector measurements. The 520 d period is interpreted as the rotation modulation by stellar surface structure. Its presence, however, may not be long-lived, and it only appears in epochs of the radial velocity data separated by \sim 10 years. This might be due to an activity cycle. The data presented here provide further evidence of a planetary companion to Alpha Tau, as well as activity-related radial velocity variations.Comment: 18 pages, 14 figures. Accepted for publication in Astronomy and Astrophysic

    Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators

    Full text link
    Context: The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity Analyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star.We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700--900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.Comment: 13 pages, 13 figures. A&A in press. Code is available at https://github.com/mzechmeister/serva

    The CARMENES search for exoplanets around M dwarfs: Radial-velocity variations of active stars in visual-channel spectra

    Full text link
    Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from 1\sim1 cm/s to 1\sim1 km/s, depending on various stellar and activity parameters. We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.50.5-11μ\mum), which were taken within the CARMENES RV planet survey during its first 2020 months of operation. During this time, 287287 of the CARMENES-sample stars were observed at least five times. From each spectrum we derived a relative RV and a measure of chromospheric Hα\alpha emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Despite having a median number of only 1111 measurements per star, we show that the RV variations of the stars with RV scatter of >10>10 m/s and a projected rotation velocity vsini>2v \sin{i}>2 km/s are caused mainly by activity. We name these stars `active RV-loud stars' and find their occurrence to increase with spectral type: from 3%\sim3\% for early-type M dwarfs (M0.00.0-2.52.5V) through 30%\sim30\% for mid-type M dwarfs (M3.03.0-5.55.5V) to >50%>50\% for late-type M dwarfs (M6.06.0-9.09.0V). Their RV-scatter amplitude is found to be correlated mainly with vsiniv \sin{i}. For about half of the stars, we also find a linear RV-CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Hα\alpha emission. Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate.Comment: A&A accepte
    corecore