497 research outputs found

    Angular Fulde-Ferrell-Larkin-Ovchinnikov state in cold fermion gases in a toroidal trap

    Full text link
    We study the possibility of angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in which the rotation symmetry is spontaneously broken, in population imbalanced fermion gases near the BCS-BEC crossover. We investigate the superfluid gases at low temperatures on the basis of the Bogoliubov-de Gennes equation, and examine the stability against thermal fluctuations using the T-matrix approach beyond the local-density approximation (LDA). We find that the angular FFLO state is stabilized in the gases confined in the toroidal trap but not in the harmonic trap. The angular FFLO state is stable near the BCS-BEC crossover owing to the formation of pseudogap. Spatial dependences of number density and local population imbalance are shown for an experimental test.Comment: final version for publication in Phys. Rev. B Rapid Communicatio

    Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors

    Full text link
    We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in the disordered systems. We analyze the microscopic model, in which the d-wave superconductivity is stabilized near the antiferromagnetic quantum critical point, and investigate two kinds of disorder, namely, box disorder and point disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial structure of modulated superconducting order parameter and the magnetic properties in the disordered FFLO state are investigated. We point out the possibility of "FFLO glass" state in the presence of strong point disorders, which arises from the configurational degree of freedom of FFLO nodal plane. The distribution function of local spin susceptibility is calculated and its relation to the FFLO nodal plane is clarified. We discuss the NMR measurements for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with Exotic Symmetries

    Effects of Fermi surface and superconducting gap structure in the field-rotational experiments: A possible explanation of the cusp-like singularity in YNi2_2B2_2C

    Full text link
    We have studied the field-orientational dependence of zero-energy density of states (FODOS) for a series of systems with different Fermi surface and superconducting gap structures. Instead of phenomenological Doppler-shift method, we use an approximate analytical solution of Eilenberger equation together with self-consistent determination of order parameter and a variational treatment of vortex lattice. First, we compare zero-energy density of states (ZEDOS) when a magnetic field is applied in the nodal direction (νnode(0)\nu_{node}(0)) and in the antinodal direction (νanti(0)\nu_{anti}(0)), by taking account of the field-angle dependence of order parameter. As a result, we found that there exists a crossover magnetic field H∗H^* so that νanti(0)>νnode(0)\nu_{anti}(0) > \nu_{node}(0) for Hνanti(0)H \nu_{anti}(0) for H>H∗H > H^*, consistent with our previous analyses. Next, we showed that H∗H^* and the shape of FODOS are determined by contribution from the small part of Fermi surface where Fermi velocity is parallel to field-rotational plane. In particular, we found that H∗H^* is lowered and FODOS has broader minima, when a superconducting gap has point nodes, in contrast to the result of the Doppler-shift method. We also studied the effects of in-plane anisotropy of Fermi surface. We found that in-plane anisotropy of quasi-two dimensional Fermi surface sometimes becomes larger than the effects of Doppler-shift and can destroy the Doppler-shift predominant region. In particular, this tendency is strong in a multi-band system where superconducting coherence lengths are isotropic. Finally, we addressed the problem of cusp-like singularity in YNi2_2B2_2C and present a possible explanation of this phenomenon.Comment: 13pages, 23figure

    Antiferromagnetic order in the FFLO state

    Full text link
    We investigate the antiferromagnetic (AF) order in the d-wave superconducting (SC) state at high magnetic fields. A two-dimensional model with on-site repulsion U, inter-site attractive interaction V and antiferromagnetic exchange interaction J is solved using the mean field theory. For finite values of U and J, a first order transition occurs from the normal state to the FFLO state, while the FFLO-BCS phase transition is second order, consistent with the experimental results in CeCoIn_5. Although the BCS-FFLO transition is continuous, the Ne'el temperature of AF order is discontinuous at the phase boundary because the AF order in the FFLO state is induced by the Andreev bound state localized in the zeros of FFLO order parameter, while the AF order hardly occurs in the uniform BCS state. The spatial structure of the magnetic moment is investigated for the commensurate AF state as well as for the incommensurate AF state. The influence of the spin fluctuations is discussed for both states. Since the fluctuations are enhanced in the normal state for incommensurate AF order, this AF order can be confined in the FFLO state. The experimental results in CeCoIn_5 are discussed.Comment: Proceedings of LT25 conference (Amsterdam, 2008

    Random Spin-orbit Coupling in Spin Triplet Superconductors: Stacking Faults in Sr_2RuO_4 and CePt_3Si

    Full text link
    The random spin-orbit coupling in multicomponent superconductors is investigated focusing on the non-centrosymmetric superconductor CePt_3Si and the spin triplet superconductor Sr_2RuO_4. We find novel manifestations of the random spin-orbit coupling in the multicomponent superconductors with directional disorders, such as stacking faults. The presence of stacking faults is indicated for the disordered phase of CePt_3Si and Sr_2RuO_4. It is shown that the d-vector of spin triplet superconductivity is locked to be d = k_y x - k_x y with the anisotropy \Delta T_c/T_c0 \sim \bar{\alpha}^2/T_c0 W_z, where \bar{\alpha}, T_c0, and W_z are the mean square root of random spin-orbit coupling, the transition temperature in the clean limit, and the kinetic energy along the c-axis, respectively. This anisotropy is much larger (smaller) than that in the clean bulk Sr_2RuO_4 (CePt_3Si). These results indicate that the helical pairing state d = k_y x - k_x y in the eutectic crystal Sr_2RuO_4-Sr_3Ru_2O_7 is stabilized in contrast to the chiral state d = (k_x \pm i k_y) z in the bulk Sr_2RuO_4. The unusual variation of T_c in CePt_3Si is resolved by taking into account the weak pair-breaking effect arising from the uniform and random spin-orbit couplings. These superconductors provide a basis for discussing recent topics on Majorana fermions and non-Abelian statistics.Comment: J. Phys. Soc. Jpn. 79 (2010) 08470

    Single Crystal Growth of Skutterudite CoP3 under High Pressure

    Full text link
    A new method to grow single crystals of skutterudite compounds is examined. Using a wedge-type, cubic-anvil, high-pressure apparatus, single crystals of CoP3 were grown from stoichiometric melts under a pressure of 3.5 GPa. Powder x-ray diffraction and electron probe microanalysis measurements indicate that the as-grown boules are a single phase of CoP3. The results suggest that CoP3 is a congruent melting compound under high pressure.Comment: 6pages,5 figures, J. Crystal Growth (in press

    Bogoliubov-de Gennes study of trapped spin-imbalanced unitary Fermi gases

    Full text link
    It is quite common that several different phases exist simultaneously in a system of trapped quantum gases of ultra-cold atoms. One such example is the strongly-interacting Fermi gas with two imbalanced spin species, which has received a great amount of attention due to the possible presence of exotic superfluid phases. By employing novel numerical techniques and algorithms, we self-consistently solve the Bogoliubov de-Gennes equations, which describe Fermi superfluids in the mean-field framework. From this study, we investigate the novel phases of spin-imbalanced Fermi gases and examine the validity of the local density approximation (LDA), which is often invoked in the extraction of bulk properties from experimental measurements within trapped systems. We show how the validity of the LDA is affected by the trapping geometry, number of atoms and spin imbalance.Comment: 15 pages, 5 figures, to be published in New J. Phys. (focus issue on "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas"

    Novel phase diagram of superconductor NaxCoO2-yH2O in a 75 % relative humidity

    Full text link
    We succeeded in synthesizing the powder samples of bilayer-hydrate sodium cobalt oxide superconductors NaxCoO2-yH2O with Tc = 0 ~ 4.6 K by systematically changing the keeping duration in a 75 % relative humidity atmosphere after intercalation of water molecules. From the magnetic measurements, we found that the one-day duration sample does not show any superconductivity down to 1.8 K, and that the samples kept for 2 ~ 7 days show superconductivity, in which Tc increases up to 4.6 K with increasing the duration. Tc and the superconducting volume fraction are almost invariant between 7 days and 1month duration. The 59Co NQR spectra indicate a systematic change in the local charge distribution on the CoO2 plane with change in duration.Comment: 4 pages, 5 figures, submitted to Journal of the Physical Society of Japa

    Charge and orbital order in Fe_3O_4

    Full text link
    Charge and orbital ordering in the low-temperature monoclinic structure of magnetite (Fe_3O_4) is investigated using LSDA+U. While the difference between t_{2g} minority occupancies of Fe^{2+}_B and Fe^{3+}_B cations is large and gives direct evidence for charge ordering, the screening is so effective that the total 3d charge disproportion is rather small. The charge order has a pronounced [001] modulation, which is incompatible with the Anderson criterion. The orbital order agrees with the Kugel-Khomskii theory.Comment: 4 pages, 2 figure

    Perturbation Theory for a Repulsive Hubbard Model in Quasi-One-Dimensional Superconductors

    Full text link
    We investigate pairing symmetry and a transition temperature in a quasi-one-dimensional repulsive Hubbard model. We solve the Eliashberg equation using the third-order perturbation expansion with respect to the on-site repulsion UU. We find that when the electron number density is shifted from the half-filled, a transition into unconventional superconductivity is expected. When one dimensionality is weak, a spin-singlet state is favorable. By contrast, when one dimensionality is strong and electron number density is far from the half-filled, a spin-triplet state is stabilized. Finally, we discuss the possibility of unconventional superconductivity caused by the on-site Coulomb repulsion in β\beta-Na0.33_{0.33}V2_2O5_5.Comment: 4 pages, 7 figure
    • …
    corecore