607 research outputs found

    Multigrid optimization for space-time discontinuous Galerkin discretizations of advection dominated flows

    Get PDF
    The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of two- and three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization process we therefore choose to minimize the spectral radius of the error transformation operator. We specifically consider optimizing h-multigrid methods with explicit Runge-Kutta type smoothers for second and third order accurate space-time discontinuous Galerkin finite element discretizations of the 2D advection-diffusion equation. The optimized schemes are compared with current h-multigrid techniques employing Runge-Kutta type smoothers. Also, the efficiency of h-, p- and hp-multigrid methods for solving the Euler equations of gas dynamics with a higher order accurate space-time DG method is investigated

    Modelling Cyclic Walking in Femurs With Metastatic Lesions:Femur-Specific Accumulation of Plasticity

    Get PDF
    Introduction Clinical fracture risk assessment in metastatic bone disease is extremely difficult, but subject-specific finite element (FE) modelling may improve these assessments in the future [Derikx, 2015]. By coupling to musculoskeletal modelling, realistic loading conditions can be implemented in FE analysis. However, it is unknown whether such analyses require complex elastic-plastic material models, or whether a linear elastic calculation already provides a reasonable prediction of fracture. Moreover, plastic deformation may accumulate over time, which is ignored by linear elastic calculations. In this study we compared linear and non-linear fracture predictions under realistic loading conditions in two patients with metastatic bone disease. Methods Two patients (P1, P2) with lytic lesions were included. Patient-specific femoral geometry and bone density were retrieved from quantitative CT-scans; the latter was used for implementing element-specific material behaviour [Keyak, 2005]. Muscle forces and hip contact forces acting on the femur during walking were calculated using musculoskeletal modelling (one typical case, adapted from [Wesseling, 2014]), and subsequently normalized to the patient’s body weight. Muscle forces were applied to attachment points that were morphed onto the patient femurs. Hip contact forces were applied to a cup mimicking the acetabulum, via a control node in the hip joint centre. Two simulations were run for each patient: a linear elastic analysis simulating a single walk cycle and a non-linear elastic-plastic analysis simulating 10 subsequent walk cycles. The safety factor (SF; yield stress/Von Mises stress) and plasticity were studied as measures of femoral failure in the linear and non-linear simulations, respectively, and compared between patients. Results The volume of elements with SF<1 (Figure 1A) as well as the volume of elements that underwent plastic deformation (Figure 1B) was highest in the femur of P1. In P1 the volume of plastic deformation increased over the loading cycles and eventually exceeded the peak volume of elements with SF<1 in the linear analysis. In P2, the volume of plasticity more or less stabilized after two loading cycles, and eventually resembled the volume of elements with SF<1 in the linear analysis. Discussion These preliminary results suggest that accumulation of plasticity under cyclic loading is femur-specific. Due to the variable and local weakening of the bone strength by metastatic lesions, relatively small changes in magnitude or direction of loading may initiate local failure and catalyze progressive failure in subsequent loading cycles. Hence, in some cases a linear analysis is sufficient, while in others it is not. Non-linear material behaviour and cyclic loading conditions are therefore required to capture these phenomena

    A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth

    Get PDF
    Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations

    Association Between Acute Kidney Injury Hospital Visits and Environmental Heat Stress at a Nicaraguan Sugarcane Plantation

    Get PDF
    Background: Mesoamerican sugarcane cutters are at a high risk of chronic kidney disease of non-traditional origin, a disease likely linked to heat-related acute kidney injury (AKI). Studies in general populations have described a positive association between high environmental temperatures and clinically assessed kidney outcomes, but there are no studies in occupational settings. Method: We accessed routine records of clinically diagnosed AKI (AKI-CD) and wet bulb globe temperatures (WBGT) at a large Nicaraguan sugarcane plantation and modeled the relationship between these using negative binomial regression. A rest-shade-hydration intervention was gradually enhanced during the study period, and efforts were made to increase the referral of workers with suspected AKI to healthcare. Results: Each 1°C WBGT was associated with an 18% (95% confidence interval [CI]: [4, 33%]) higher AKI-CD rate on the same day and a 14% (95% CI [−5, 37%]) higher rate over a week. AKI-CD rates and severity, and time between symptoms onset and diagnosis decreased during the study period, that is, with increasing rest-shade-hydration intervention. Symptoms and biochemical signs of systemic inflammation were common among AKI-CD cases. Discussion: Occupational heat stress, resulting from heavy work in environmental heat, was associated with a higher rate of clinically diagnosed AKI in a population at risk of CKDnt. Promoting rest-shade-hydration may have contributed to reducing AKI rates during the study period. Occupational health and safety personnel have key roles to play in enforcing rest, shade, and hydration practices, referring workers with suspected AKI to healthcare as well as collecting and analyzing the data needed to support workplace heat stress interventions

    Nuclear structure studies with the 7Li(e,e'p) reaction

    Get PDF
    Experimental momentum distributions for the transitions to the ground state and first excited state of 6He have been measured via the reaction 7Li(e,e'p)6He, in the missing momentum range from -70 to 260 MeV/c. They are compared to theoretical distributions calculated with mean-field wave functions and with variational Monte Carlo (VMC) wave functions which include strong state-dependent correlations in both 7Li and 6He. These VMC calculations provide a parameter-free prediction of the momentum distribution that reproduces the measured data, including its normalization. The deduced summed spectroscopic factor for the two transitions is 0.58 +/- 0.05, in perfect agreement with the VMC value of 0.60. This is the first successful comparison of experiment and ab initio theory for spectroscopic factors in p-shell nuclei.Comment: 4 pages, 3 figure

    Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes

    Get PDF
    Non-ionized media subject to strong fields can become locally ionized by penetration of finger-shaped streamers. We study negative streamers between planar electrodes in a simple deterministic continuum approximation. We observe that for sufficiently large fields, the streamer tip can split. This happens close to Firsov's limit of `ideal conductivity'. Qualitatively the tip splitting is due to a Laplacian instability quite like in viscous fingering. For future quantitative analytical progress, our stability analysis of planar fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised version of March 10, 200

    Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts

    Get PDF
    Synaptophysins 1 and 2 and synaptogyrins 1 and 3 constitute a major family of synaptic vesicle membrane proteins. Unlike other widely expressed synaptic vesicle proteins such as vSNAREs and synaptotagmins, the primary function has not been resolved. Here, we report robust elevation in the probability of release of readily releasable vesicles with both high and low release probabilities at a variety of synapse types from knockout mice missing all four family members. Neither the number of readily releasable vesicles, nor the timing of recruitment to the readily releasable pool was affected. The results suggest that family members serve as negative regulators of neurotransmission, acting directly at the level of exocytosis to dampen connection strength selectively when presynaptic action potentials fire at low frequency. The widespread expression suggests that chemical synapses may play a frequency filtering role in biological computation that is more elemental than presently envisioned

    Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over : a randomised controlled trial

    Get PDF
    Background: Observational studies have frequently reported an association between cognitive function and nutrition in later life but randomised trials of B vitamins and antioxidant supplements have mostly found no beneficial effect. We examined the effect of daily supplementation with 11 vitamins and 5 minerals on cognitive function in older adults to assess the possibility that this could help to prevent cognitive decline. Methods: The study was carried out as part of a randomised double blind placebo controlled trial of micronutrient supplementation based in six primary care health centres in North East Scotland. 910 men and women aged 65 years and over living in the community were recruited and randomised: 456 to active treatment and 454 to placebo. The active treatment consisted of a single tablet containing eleven vitamins and five minerals in amounts ranging from 50–210 % of the UK Reference Nutrient Intake or matching placebo tablet taken daily for 12 months. Digit span forward and verbal fluency tests, which assess immediate memory and executive functioning respectively, were conducted at the start and end of the intervention period. Risk of micronutrient deficiency at baseline was assessed by a simple risk questionnaire. Results: For digit span forward there was no evidence of an effect of supplements in all participants or in sub-groups defined by age or risk of deficiency. For verbal fluency there was no evidence of a beneficial effect in the whole study population but there was weak evidence for a beneficial effect of supplementation in the two pre-specified subgroups: in those aged 75 years and over (n 290; mean difference between supplemented and placebo groups 2.8 (95% CI -0.6, 6.2) units) and in those at increased risk of micronutrient deficiency assessed by the risk questionnaire (n 260; mean difference between supplemented and placebo groups 2.5 (95% CI -1.0, 6.1) units). Conclusion: The results provide no evidence for a beneficial effect of daily multivitamin and multimineral supplements on these domains of cognitive function in community-living people over 65 years. However, the possibility of beneficial effects in older people and those at greater risk of nutritional deficiency deserves further attention.Peer reviewedPublisher PD
    corecore