345 research outputs found
Protecting LHC Components Against Radiation Resulting From an Unsynchronized Beam Abort
The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septum MSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
We investigate rogue waves in buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves by computing discrete soliton spectra using the nonlinear Fourier transform for the Kortewegâde Vries equation with vanishing boundary conditions. In a previous study, data from a single measurement site were considered. The comparison of soliton spectra from time series with and without rogue waves suggested a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.</p
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
The shallow waters off the coast of Norderney in the southern North Sea are characterised by a higher frequency of rogue wave occurrences than expected. Here, rogue waves refer to waves exceeding twice the significant wave height. The role of nonlinear processes in the generation of rogue waves at this location is currently unclear. Within the framework of the Kortewegâde Vries (KdV) equation, we investigated the discrete soliton spectra of measured time series at Norderney to determine differences between time series with and without rogue waves. For this purpose, we applied a nonlinear Fourier transform (NLFT) based on the Kortewegâde Vries equation with vanishing boundary conditions (vKdV-NLFT). At measurement
sites where the propagation of waves can be described by the KdV equation, the solitons in the discrete nonlinear vKdV-NLFT spectrum correspond to physical solitons. We do not know whether this is the case at the considered measurement site. In this paper, we use the nonlinear spectrum to classify rogue wave and non-rogue wave time series. More specifically, we investigate if the discrete nonlinear spectra of measured time series with visible rogue waves differ from those without rogue waves. Whether or not the discrete part of the nonlinear spectrum corresponds to solitons with respect to the conditions at the measurement site is not relevant in this case, as we are not concerned with how these spectra change during propagation. For each time series containing a rogue wave, we were able to identify at least one soliton in the nonlinear spectrum that contributed to the occurrence of the rogue wave in that time series. The amplitudes of these solitons were found to be smaller than the crest height of the corresponding rogue wave, and interaction with the continuous wave spectrum is needed to fully explain the observed rogue wave.
Time series with and without rogue waves showed different characteristic soliton spectra. In most of the spectra calculated from rogue wave time series, most of the solitons clustered around similar heights, but the largest soliton was outstanding, with an amplitude significantly larger than all other solitons. The presence of a clearly outstanding soliton in the spectrum was found to be an indicator pointing towards the enhanced probability of the occurrence of a rogue wave in the time series. Similarly, when the discrete spectrum appears as a cluster of solitons without the presence of a clearly outstanding soliton, the presence of a rogue wave in the observed time series is unlikely. These results suggest that soliton-like and nonlinear processes substantially contribute to the enhanced occurrence of rogue waves off Norderney.</p
Optical absorption and activated transport in polaronic systems
We present exact results for the optical response in the one-dimensional
Holstein model. In particular, by means of a refined kernel polynomial method,
we calculate the ac and dc electrical conductivities at finite temperatures for
a wide parameter range of electron phonon interaction. We analyze the
deviations from the results of standard small polaron theory in the
intermediate coupling regime and discuss non-adiabaticity effects in detail.Comment: 7 pages, 8 figure
Metal-insulator transition in the one-dimensional Holstein model at half filling
We study the one-dimensional Holstein model with spin-1/2 electrons at
half-filling. Ground state properties are calculated for long chains with great
accuracy using the density matrix renormalization group method and extrapolated
to the thermodynamic limit. We show that for small electron-phonon coupling or
large phonon frequency, the insulating Peierls ground state predicted by
mean-field theory is destroyed by quantum lattice fluctuations and that the
system remains in a metallic phase with a non-degenerate ground state and
power-law electronic and phononic correlations. When the electron-phonon
coupling becomes large or the phonon frequency small, the system undergoes a
transition to an insulating Peierls phase with a two-fold degenerate ground
state, long-range charge-density-wave order, a dimerized lattice structure, and
a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure
The Quadrupole Magnets for the LHC Injection Transfer Lines
Two injection transfer lines, each about 2.8 km long, are being built to transfer protons at 450 GeV from the Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC). A total of 180 quadrupole magnets are required; they are produced in the framework of the contribution of the Russian Federation to the construction of the LHC. The classical quadrupoles, built from laminated steel cores and copper coils, have a core length of 1.4 m, an inscribed diameter of 32 mm and a strength of 53.5 T/m at a current of 530 A. The total weight of one magnet is 1.1 ton. For obtaining the required field quality at the small inscribed diameter, great care in the stamping of the laminations and the assembly of quadrants is necessary. Special instruments have been developed to measure, with a precision of some mm, the variations of the pole gaps over the full length of the magnet and correlate them to the obtained field distribution. The design has been developed in a collaboration between BINP and CERN. Fabrication and the magnetic measurements are done at BINP and should be finished at the end of the year 2000
Orbital and spin physics in LiNiO2 and NaNiO2
We derive a spin-orbital Hamiltonian for a triangular lattice of e_g orbital
degenerate (Ni^{3+}) transition metal ions interacting via 90 degree
superexchange involving (O^{2-}) anions, taking into account the on-site
Coulomb interactions on both the anions and the transition metal ions. The
derived interactions in the spin-orbital model are strongly frustrated, with
the strongest orbital interactions selecting different orbitals for pairs of Ni
ions along the three different lattice directions. In the orbital ordered
phase, favoured in mean field theory, the spin-orbital interaction can play an
important role by breaking the U(1) symmetry generated by the much stronger
orbital interaction and restoring the threefold symmetry of the lattice. As a
result the effective magnetic exchange is non-uniform and includes both
ferromagnetic and antiferromagnetic spin interactions. Since ferromagnetic
interactions still dominate, this offers yet insufficient explanation for the
absence of magnetic order and the low-temperature behaviour of the magnetic
susceptibility of stoichiometric LiNiO_2. The scenario proposed to explain the
observed difference in the physical properties of LiNiO_2 and NaNiO_2 includes
small covalency of Ni-O-Li-O-Ni bonds inducing weaker interplane superexchange
in LiNiO_2, insufficient to stabilize orbital long-range order in the presence
of stronger intraplane competition between superexchange and Jahn-Teller
coupling.Comment: 33 pages, 12 postscript figures, uses iopams.sty . This article
features in New Journal of Physics as part of a Focus Issue on Orbital
Physics - all contributions may be freely accessed at
(http://stacks.iop.org/1367-2630/6/i=1/a=E05). The published version of this
article may be found at http://stacks.iop.org/1367-2630/7/12
Infrared conductivity of a one-dimensional charge-ordered state: quantum lattice effects
The optical properties of the charge-ordering () phase of the
one-dimensional (1D) half-filled spinless Holstein model are derived at zero
temperature within a well-known variational approach improved including
second-order lattice fluctuations. Within the phase, the static lattice
distortions give rise to the optical interband gap, that broadens as the
strength of the electron-phonon () interaction increases. The lattice
fluctuation effects induce a long subgap tail in the infrared conductivity and
a wide band above the gap energy. The first term is due to the multi-phonon
emission by the charge carriers, the second to the interband transitions
accompanied by the multi-phonon scattering. The results show a good agreement
with experimental spectra.Comment: 5 figure
Steel septum magnets for the LHC beam injection and extraction
The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and built in a collaboration between IHEP (Protvino) and CERN (Geneva). This paper presents the magnet design, the experience gathered during the preseries construction, and gives the results of detailed magnetic measurements of the MSIB and MSDC preseries magnets
Requirements for the LHC collimation system
The LHC requires efficient collimation during all phases of the beam cycle. Collimation plays important roles in prevention of magnet quenches from regular beam diffusion, detection of abnormal beam loss and subsequent beam abort, radiation protection, and passive protection of the superconducting magnets in case of failures. The different roles of collimation and the high beam power in the LHC impose many challenges for the design of the collimation system. In particular, the collimators must be able to withstand the expected particle losses. The requirements for the LHC collimation system are presented
- âŠ