153 research outputs found

    Strange-quark contribution to the ratio of neutral- to charged-current cross sections in neutrino-nucleus scattering

    Full text link
    A formalism based on a relativistic plane wave impulse approximation is developed to investigate the strange-quark content (gAsg_{A}^{s}) of the axial-vector form factor of the nucleon via neutrino-nucleus scattering. Nuclear structure effects are incorporated via an accurately calibrated relativistic mean-field model. The ratio of neutral- to charged-current cross sections is used to examine the sensitivity of this observable to gAsg_{A}^{s}. For values of the incident neutrino energy in the range proposed by the FINeSSE collaboration and by adopting a value of gAs=0.19g_{A}^{s}=-0.19, a 30% enhancement in the ratio is observed relative to the gAs=0g_{A}^{s}=0 result.Comment: 20 pages, 6 figures, Revtex, Submitted to Phys. Rev.

    Neutrino-Nucleus Reactions and Muon Capture in 12C

    Full text link
    The neutrino-nucleus cross section and the muon capture rate are discussed within a simple formalism which facilitates the nuclear structure calculations. The corresponding formulae only depend on four types of nuclear matrix elements, which are currently used in the nuclear beta decay. We have also considered the non-locality effects arising from the velocity-dependent terms in the hadronic current. We show that for both observables in 12C the higher order relativistic corrections are of the order of ~5 only, and therefore do not play a significant role. As nuclear model framework we use the projected QRPA (PQRPA) and show that the number projection plays a crucial role in removing the degeneracy between the proton-neutron two quasiparticle states at the level of the mean field. Comparison is done with both the experimental data and the previous shell model calculations. Possible consequences of the present study on the determination of the νμ>νe\nu_\mu ->\nu_e neutrino oscillation probability are briefly addressed.Comment: 29 pages, 6 figures, Revtex4. Several changes were made to the previous manuscript, the results and final conclusions remain unalterable. It has been accepted for publication as a Regular Article in Physical Review

    Neutrino-nucleus interactions at low energies within Fermi-liquid theory

    Get PDF
    Cross sections are calculated for neutrino scattering off heavy nuclei at energies below 50 MeV. The theory of Fermi liquid is applied to estimate the rate of neutrino-nucleon elastic and inelastic scattering in a nuclear medium in terms of dynamic form factors. The cross sections, obtained here in a rather simple way, are in agreement with the results of the other much more sophisticated nuclear models. A background rate from the solar neutrino interactions within a large Ge detector is estimated in the above-mentioned approach. The knowledge of the rate is in particular rather important for new-generation large-scale neutrino experiments.Comment: 9 pages, 6 figure

    Theory of doorway states for one-nucleon transfer reactions. II. Model-independent study of nuclear correlation effects

    Get PDF
    The correlation effects in nuclei owing to which the nuclear wave functions are different from the Slater determinants are studied on the basis of the original theory. The calculated numbers of nucleons out of the nuclear Fermi-surface are in reasonable agreement with the finding from the high-momentum components of the nucleon momentum distributions in nuclei. The problems concerning the nuclear binding energy are also discussed.Comment: 11 pages LaTeX, epsfig.sty + 1 PostScript figure. submitted to Journal of Nuclear Physic

    New effective interactions in RMF theory with non-linear terms and density-dependent meson-nucleon coupling

    Full text link
    New parameter sets for the Lagrangian density in the relativistic mean field (RMF) theory, PK1 with nonlinear sigma- and omega-meson self-coupling, PK1R with nonlinear sigma-, omega- and rho-meson self-coupling and PKDD with the density-dependent meson-nucleon coupling, are proposed. They are able to provide an excellent description not only for the properties of nuclear matter but also for the nuclei in and far from the valley of beta-stability. For the first time in the parametrization of the RMF Lagrangian density, the center-of-mass correction is treated by a microscopic way, which is essential to unify the description of nuclei from light to heavy regions with one effective interaction.Comment: 22 pages, 16 EPS figures, RevTeX

    Pion photoproduction on nucleons in a covariant hadron-exchange model

    Full text link
    We present a relativistic dynamical model of pion photoproduction on the nucleon in the resonance region. It offers several advances over the existing approaches. The model is obtained by extending our πN\pi N-scattering description to the electromagnetic channels. The resulting photopion amplitude is thus unitary in the πN\pi N, \ga N channel space, Watson's theorem is exactly satisfied. At this stage we have included the pion, nucleon, \De(1232)-resonance degrees of freedom. The ρ\rho and ω\omega meson exchanges are also included, but play a minor role in the considered energy domain (up to s=1.5\sqrt{s}=1.5 GeV). In this energy range the model provides a good description of all the important multipoles. We have allowed for only two free parameters -- the photocouplings of the Δ\Delta-resonance. These couplings are adjusted to reproduce the strength of corresponding resonant-multipoles M1+M_{1+} and E1+E_{1+} at the resonance position.Comment: 17 pages, 4 figs, version to appear in Phys. Rev. C 70 (2004

    Deconfinement in the Quark Meson Coupling Model

    Get PDF
    The Quark Meson Coupling Model which describes nuclear matter as a collection of non-overlapping MIT bags interacting by the self-consistent exchange of scalar and vector mesons is used to study nuclear matter at finite temperature. In its modified version, the density dependence of the bag constant is introduced by a direct coupling between the bag constant and the scalar mean field. In the present work, the coupling of the scalar mean field with the constituent quarks is considered exactly through the solution of the Dirac equation. Our results show that a phase transition takes place at a critical temperature around 200 MeV in which the scalar mean field takes a nonzero value at zero baryon density. Furthermore it is found that the bag constant decreases significantly when the temperature increases above this critical temperature indicating the onset of quark deconfinement.Comment: LaTeX/TeX 15 pages (zk2.tex)+ 6 figures in TeX forma

    Zaburzenia w białkach kardiomiocytu przyczyną niewydolności serca

    Get PDF
    Niewydolność serca nadal stanowi znaczący problem kliniczny i ekonomiczny związany z bardzo dużą zachorowalnością i śmiertelnością. Niewydolność serca mogą wywoływać znane czynniki, prowadzące do powstania kardiomiopatii wtórnej lub czynniki nieznane, powodujące kardiomiopatię pierwotną. Dzięki rozwojowi techniki molekularnej możliwe staje się określenie przyczyn kardiomiopatii dotychczas określanych mianem pierwotnych. Jedną z takich przyczyn są zaburzenia w obrębie białek kardiomiocytu, tworzących błonę komórkową (sarkoglikany, dystrofina), cytoszkielet (desmina, tubulina) czy sarkomer (aktyna, miozyna, troponina I, T, C)

    Hot Nuclear Matter in the Quark Meson Coupling Model with Dilatons

    Get PDF
    We study hot nuclear matter in an explicit quark model based on a mean field description of nonoverlapping nucleon bags bound by the self-consistent exchange of scalar and vector mesons as well as the glueball field. The glueball exchange as well as a realization of the broken scale invariance of quantum chromodynamics is achieved through the introduction of a dilaton field. The calculations also take into account the medium-dependence of the bag constant. The effective potential with dilatons is applied to nuclear matter. The nucleon properties at finite temperature as calculated here are found to be appreciably different from cold nuclear matter. The introduction of the dilaton potential improves the shape of the saturation curve at T=0 and is found to affect hot nuclear matter significantly.Comment: LaTeX/TeX 12 pages (zak2), 13 figures in TeX forma

    Reply to the Comment by B. Andresen

    Full text link
    All the comments made by Andresen's comments are replied and are shown not to be pertinent. The original discussions [ABE S., Europhys. Lett. 90 (2010) 50004] about the absence of nonextensive statistical mechanics with q-entropies for classical continuous systems are reinforced.Comment: 5 pages. This is Reply to B. Andresen's Comment on the paper entitled "Essential discreteness in generalized thermostatistics with non-logarithmic entropy", Europhys. Lett. 90 (2010) 5000
    corecore