574 research outputs found

    Searching for zeroes: unconventional superconductors in a magnetic field

    Get PDF
    We review the results of the microscopic approach to the calculation of the anisotropy in the specific heat in unconventional superconductors under rotated field. Treating vortex scattering on equal footing with the energy shift we find that the electronic specific heat may have minima or maxima when the field is aligned with the nodes, depending on the temperature and field range. We discuss the influence of the paramagnetic limiting and Fermi surface shape on the location of the inversion line.Comment: Proceedings of SCES-0

    Unconventional superconductors under rotating magnetic field I: density of states and specific heat

    Get PDF
    We develop a fully microscopic theory for the calculations of the angle-dependent properties of unconventional superconductors under a rotated magnetic field. We employ the quasiclassical Eilenberger equations, and use a variation of the Brandt-Pesch-Tewordt (BPT) method to obtain a closed form solution for the Green's function. The equations are solved self-consistently for quasi-two-dimensional dx2−y2d_{x^2-y^2} (dxyd_{xy}) superconductors with the field rotated in the basal plane. The solution is used to determine the density of states and the specific heat. We find that applying the field along the gap nodes may result in minima or maxima in the angle-dependent specific heat, depending on the location in the T-H plane. This variation is attributed to the scattering of the quasiparticles on vortices, which depends on both the field and the quasiparticle energy, and is beyond the reach of the semiclassical approximation. We investigate the anisotropy across the T-H phase diagram, and compare our results with the experiments on heavy fermion CeCoIn5_5.Comment: 18 pages, 10 figure

    Nodes vs. minima in the energy gap of iron-pnictides from field-induced anisotropy

    Get PDF
    We develop the formalism for computing the oscillations of the specific heat and thermal transport under rotated magnetic field in multiband superconductors with anisotropic gap and apply it to iron-pnictides. We show that these oscillations change sign at low temperatures and fields, which strongly influences the conclusions about the gap structure based on experiment. We find that recent measurements of the specific heat oscillations indicate that the iron-based superconductors possess an anisotropic gap with deep minima or nodes close to the line connecting electron and hole pockets. We make predictions for the behavior of the thermal conductivity that will help distinguish between these cases.Comment: 4+3 pages, published version with supplemen

    Theory of thermal conductivity in extended-ss state superconductors: application to ferropnictides

    Get PDF
    Within a two-band model for the recently discovered ferropnictide materials, we calculate the thermal conductivity assuming general superconducting states of A1gA_{1g} ("s-wave") symmetry, considering both currently popular isotropic "sign-changing" ss states and states with strong anisotropy, including those which manifest nodes or deep minima of the order parameter. We consider both intra- and interband disorder scattering effects, and show that in situations where a low-temperature linear-TT exists in the thermal conductivity, it is not always "universal" as in d-wave superconductors. We discuss the conditions under which such a term can disappear, as well as how it can be induced by a magnetic field. We compare our results to several recent experiments.Comment: 13 page

    Unconventional superconductors under rotating magnetic field II: thermal transport

    Full text link
    We present a microscopic approach to the calculations of thermal conductivity in unconventional superconductors for a wide range of temperatures and magnetic fields. Our work employs the non-equilibrium Keldysh formulation of the quasiclassical theory. We solve the transport equations using a variation of the Brandt-Pesch-Tewordt (BPT) method, that accounts for the quasiparticle scattering on vortices. We focus on the dependence of the thermal conductivity on the direction of the field with the respect to the nodes of the order parameter, and discuss it in the context of experiments aiming to determine the shape of the gap from such anisotropy measurements. We consider quasi-two dimensional Fermi surfaces with vertical line nodes and use our analysis to establish the location of gap nodes in heavy fermion CeCoIn5_5 and organic superconductor κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 17 pages, 13 figure

    Anisotropy of the heat capacity in Pauli limited unconventional superconductors

    Get PDF
    Diamagnetically coupled magnetic field can be used as a probe of nodal positions in unconventional superconductors. The heat capacity depends on the angle φ{symbol}0 between the magnetic field and the nodal directions. We show that the anisotropy C(φ{symbol}0) persists even in systems with strong paramagnetic coupling to the electrons\u27 spins. © 2007 Elsevier B.V. All rights reserved

    Nodal structure of quasi-2D superconductors probed by magnetic field

    Get PDF
    We consider a quasi two-dimensional superconductor with line nodes in an in-plane magnetic field, and compute the dependence of the specific heat, CC, and the in-plane heat conductivity, κ\kappa, on the angle between the field and the nodal direction in the vortex state. We use a variation of the microscopic Brandt-Pesch-Tewordt method that accounts for the scattering of quasiparticles off vortices, and analyze the signature of the nodes in CC and κ\kappa. At low to moderate fields the specific heat anisotropy changes sign with increasing temperature. Comparison with measurements of CC and κ\kappa in CeCoIn5_5 resolves the contradiction between the two in favor of the dx2−y2d_{x^2-y^2} gap.Comment: 5 pages, 3 figure
    • …
    corecore