120 research outputs found

    Hidden area and mechanical nonlinearities in freestanding graphene

    Get PDF
    We investigated the effect of out-of-plane crumpling on the mechanical response of graphene membranes. In our experiments, stress was applied to graphene membranes using pressurized gas while the strain state was monitored through two complementary techniques: interferometric profilometry and Raman spectroscopy. By comparing the data obtained through these two techniques, we determined the geometric hidden area which quantifies the crumpling strength. While the devices with hidden area ∼0 %\sim0~\% obeyed linear mechanics with biaxial stiffness 428±10428\pm10 N/m, specimens with hidden area in the range 0.5−1.0 %0.5-1.0~\% were found to obey an anomalous Hooke's law with an exponent ∼0.1\sim0.1

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2∘\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2∘\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Nanopore surface coating delivers nanopore size and shape through conductance-based sizing

    Get PDF
    The performance of nanopore single-molecule sensing elements depends intimately on their physical dimensions and surface chemical properties. These factors underpin the dependence of the nanopore ionic conductance on electrolyte concentration, yet the measured, or modeled, dependence only partially illuminates the details of geometry and surface chemistry. Using the electrolyte-dependent conductance data before and after selective surface functionalization of solid-state nanopores, however, introduces more degrees of freedom and improves the performance of conductance-based nanopore characterizations. Sets of representative nanopore profiles were used to generate conductance data, and the nanopore shape and exact dimensions were identified, through conductance alone, by orders-of-magnitude 3 reductions in the geometry optimization metrics. The optimization framework could similarly be used to evaluate the nanopore surface coating thickness

    Differential Geometry Based Multiscale Models

    Full text link
    • …
    corecore