219 research outputs found

    Optical spectroscopy of rare-earth ions doped KY(WO4)2 thin films

    Get PDF
    KY(WO4)2 thin films doped with Dy3+, Tb3+, Yb3+, were grown onto KY(WO4)2 substrates using liquid-phase epitaxy. Spectroscopic investigations of the grown layers were performed. Obtained results were compared with spectra given for bulk crystals. Upconversion experiments after direct Yb3+ excitation in Dy3+-Yb3+ and Tb3+-Yb3+ codoped layers will be also presented

    Nano-Hall sensors with granular Co-C

    Full text link
    We analyzed the performance of Hall sensors with different Co-C ratios, deposited directly in nano-structured form, using Co2(CO)8Co_2(CO)_8 gas molecules, by focused electron or ion beam induced deposition. Due to the enhanced inter-grain scattering in these granular wires, the Extraordinary Hall Effect can be increased by two orders of magnitude with respect to pure Co, up to a current sensitivity of 1Ω/T1 \Omega/T. We show that the best magnetic field resolution at room temperature is obtained for Co ratios between 60% and 70% and is better than 1ÎŒT/Hz1/21 \mu T/Hz^{1/2}. For an active area of the sensor of 200×200nm2200 \times 200 nm^2, the room temperature magnetic flux resolution is ϕmin=2×10−5ϕ0\phi_{min} = 2\times10^{-5}\phi_0, in the thermal noise frequency range, i.e. above 100 kHz.Comment: 5 pages, 4 figure

    Continuum models of focused electron beam induced processing

    Full text link
    © 2015 Toth et al. Focused electron beam induced processing (FEBIP) is a suite of direct-write, high resolution techniques that enable fabrication and editing of nanostructured materials inside scanning electron microscopes and other focused electron beam (FEB) systems. Here we detail continuum techniques that are used to model FEBIP, and release software that can be used to simulate a wide range of processes reported in the FEBIP literature. These include: (i) etching and deposition performed using precursors that interact with a surface through physisorption and activated chemisorption, (ii) gas mixtures used to perform simultaneous focused electron beam induced etching and deposition (FEBIE and FEBID), and (iii) etch processes that proceed through multiple reaction pathways and generate a number of reaction products at the substrate surface. We also review and release software for Monte Carlo modeling of the precursor gas flux which is needed as an input parameter for continuum FEBIP models

    Coordination and organometallic precursors of group 10 and 11 Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies

    Get PDF
    Nanostructured materials made from group 10 Ni, Pd, Pt and group 11 Cu, Ag, Au elements have outstanding technological relevance in microelectronics, nano optics, catalysis, and energy conversion. Processes that allow for the easy and reliable fabrication of such nanostructures are heavily sought after. Focused electron beam induced deposition FEBID is the only direct write technique that can fabricate nanostructures with arbitrary shape and dimensions down to the sub 10 nm regime. However, the complex chemistry of FEBID involving electron induced dissociation processes of metalorganic precursors molecules, surface kinetics, and thermal effects is poorly understood and far from being optimized. Here, we review in a comparative manner the performance and the underlying chemical reactions of surface deposition processes, namely, chemical vapour deposition CVD , atomic layer deposition ALD , and FEBID itself. The knowledge gained in CVD and ALD as related surface deposition techniques will help us to understand the spatially selective chemistry occurring in FEBID. Fundamental surface and gas phase studies provide insight to electron induced chemistry and desorption of precursor fragments. Specific emphasis is put on the type of the ligands and their different behaviour under thermal, surface related, and electron induced processes. The comprehensive overview of the current state of FEBID for group 10 and 11 metals includes reactive environments and purification approaches as these may provide valuable information on the design of novel precursors. The evaluation of the precursor and process performance is extended to include W, Co, Fe, Ru, Rh, and Ir to represent a general guide towards future developments in FEBID. These may not only rely on the design of novel compounds but also on optimized deposition strategies inspired by ALD and CV

    Annular aperture arrays: study in the visible region of the electromagnetic spectrum

    No full text
    http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-13-1611Baida and Van Labeke recently proposed a structure that exhibits a supertransmission of light through an array of nanometric coaxial apertures in a metallic film that has been named an annular aperture array (AAA) [Opt. Commun.209, 17 (2002); Phys. Rev. B67, 155314 (2003); J. Microsc.213, 140 (2003)]. We present the first experimental study, to our knowledge, of an AAA structure in the visible region. For technological reasons, the structure under study does not produce a supertransmission of 80% as in Baida and Van Labeke [Opt. Commun.209, 17 (2002)]. We built the nanostructure and experimentally recorded its far-field spectral response. This transmission shows only one broad band with a maximum around lambda=700 nm, giving a maximum efficiency around 17%. A finite-difference time-domain simulation reproduces quite well the obtained transmission spectrum

    Hydrogen sorption in the LiH-LiF-MgB2 system

    Get PDF
    A composite material in the LiH-LiF-MgB2 system has been synthesized by high-energy ball milling. Some peaks in addition to that of the binary 2LiH-MgB2 and 2LiF-MgB2 systems are observed for the composite material by high-pressure differential scanning calorimetry (HP-DSC), indicating the formation of intermediate phases. In situ synchrotron radiation powder X-ray diffraction (SR-PXD) performed at 60 bar of H-2 and 390 degrees C shows a superposition of both reaction pathways that are typical for 2LiH-MgB2 and 2LiF-MgB2. After hydrogen absorption of the LiH-LiF-MgB2 composite the vibrational modes of LiBH4 were observed by attenuated total reflection infrared (ATR-IR) spectroscopy. The F-19 MAS NMR spectrum of the LiF-LiBH4 sample after heat treatment in hydrogen is strongly dominated by the centerband and spinning sidebands from LiF; in addition, a low-intensity resonance, very similar to that of [BF4](-) ion, is identified

    Towards the third dimension in direct electron beam writing of silver

    Get PDF
    Carboxylates constitute an extremely promising class of precursor compounds for the electron beam induced deposition of silver. In this work both silver 2,2 dimethylbutyrate and silver pentafluoropropionate were investigated with respect to their dwell time dependent deposition behavior and growth characteristics. While silver 2,2 dimethylbutyrate showed a strong depletion in the center of the impinging electron beam profile hindering any vertical growth, silver pentafluoropropionate indicated a pronounced dependency of the deposit height on the dwell time. Truly three dimensional silver structures could be realized with silver pentafluoropropionate. The pillars displayed a polycrystalline habit with silver contents of more than 50 at. and strong Raman enhancement constituting a promising route towards direct electron beam writing of three dimensional plasmonic device parts from the gas phase
    • 

    corecore