609 research outputs found

    Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO<sub>2</sub>

    Get PDF
    The trajectories of soil carbon (C) in the changing climate are of utmost importance, as soil carbon is a substantial carbon storage with a large potential to impact the atmospheric carbon dioxide (CO2) burden. Atmospheric CO2 observations integrate all processes affecting C exchange between the surface and the atmosphere. Therefore they provide a benchmark for carbon cycle models. We evaluated two distinct soil carbon models (CBALANCE and YASSO) that were implemented to a global land surface model (JSBACH) against atmospheric CO2 observations. We transported the biospheric carbon fluxes obtained by JSBACH using the atmospheric transport model TM5 to obtain atmospheric CO2. We then compared these results with surface observations from Global Atmosphere Watch (GAW) stations as well as with column XCO2 retrievals from the GOSAT satellite. The seasonal cycles of atmospheric CO2 estimated by the two different soil models differed. The estimates from the CBALANCE soil model were more in line with the surface observations at low latitudes (0 N–45 N) with only 1 % bias in the seasonal cycle amplitude (SCA), whereas YASSO was underestimating the SCA in this region by 32 %. YASSO gave more realistic seasonal cycle amplitudes of CO2 at northern boreal sites (north of 45 N) with underestimation of 15 % compared to 30 % overestimation by CBALANCE. Generally, the estimates from CBALANCE were more successful in capturing the seasonal patterns and seasonal cycle amplitudes of atmospheric CO2 even though it overestimated soil carbon stocks by 225 % (compared to underestimation of 36 % by YASSO) and its predictions of the global distribution of soil carbon stocks was unrealistic. The reasons for these differences in the results are related to the different environmental drivers and their functional dependencies of these two soil carbon models. In the tropical region the YASSO model showed earlier increase in season of the heterotophic respiration since it is driven by precipitation instead of soil moisture as CBALANCE. In the temperate and boreal region the role of temperature is more dominant. There the heterotophic respiration from the YASSO model had larger annual variability, driven by air temperature, compared to the CBALANCE which is driven by soil temperature. The results underline the importance of using sub-yearly data in the development of soil carbon models when they are used in shorter than annual time scales

    An accretion model for the growth of the central black hole associated with ionization instability in quasars

    Get PDF
    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy.The mass ratio between black hole and its host galactic bulge is a nature consequence of our model.Comment: submitted to ApJ, 15 page

    Thermal X-Ray Pulses Resulting From Pulsar Glitches

    Get PDF
    The non-spherically symmetric transport equations and exact thermal evolution model are used to calculate the transient thermal response to pulsars. The three possible ways of energy release originated from glitches, namely the `shell', `ring' and `spot' cases are compared. The X-ray light curves resulting from the thermal response to the glitches are calculated. Only the `spot' case and the `ring' case are considered because the `shell' case does not produce significant modulative X-rays. The magnetic field (B\vec B) effect, the relativistic light bending effect and the rotational effect on the photons being emitted in a finite region are considered. Various sets of parameters result in different evolution patterns of light curves. We find that this modulated thermal X-ray radiation resulting from glitches may provide some useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap

    Anisotropic multi-gap superfluid states in nuclear matter

    Full text link
    It is shown that under changing density or temperature a nucleon Fermi superfluid can undergo a phase transition to an anisotropic superfluid state, characterized by nonvanishing gaps in pairing channels with singlet-singlet (SS) and triplet-singlet (TS) pairing of nucleons (in spin and isospin spaces). In the SS pairing channel nucleons are paired with nonzero orbital angular momentum. Such two-gap states can arise as a result of branching from the one-gap solution of the self-consistent equations, describing SS or TS pairing of nucleons, that depends on the relationship between SS and TS coupling constants at the branching point. The density/temperature dependence of the order parameters and the critical temperature for transition to the anisotropic two-gap state are determined in a model with the SkP effective interaction. It is shown that the anisotropic SS-TS superfluid phase corresponds to a metastable state in nuclear matter.Comment: Prepared with RevTeX4, 7p., 5 fi

    Studies on changes of estimated breeding values of U.S. Holstein bulls for final score from the first to second crop of daughters

    Get PDF
    The purpose of this study was to find ways of reducing changes of sire predicted transmitting ability for type’s final scores (PTATs) from the first to second crop of daughters. The PTATs were estimated from two datasets: D01 (scores recorded up to 2001) and D05 (scores recorded up to 2005). The PTAT changes were calculated as the difference between the evaluations based on D01 and D05. The PTATs were adjusted to a common genetic base of all evaluated cows born in 1995. The single-trait (ST) animal model included the fixed effects of the herd–year–season–classifier, age by year group at classification, stage of lactation at classification, registry status of animals, and additive genetic and permanent environment random effects. Unknown parent groups (UPGs) were defined based on every other birth year starting from 1972. Modifications to the ST model included the usage of a single record per cow, separate UPGs for first and second crop daughters, separate UPGs for sires and dams, and deepened pedigrees for dams with missing phenotypic records. Also, the multiple-trait (MT) model treated records of registered and grade cows as correlated traits. The mean PTAT change, for all of the sires, was close to zero in all of the models analyzed. The estimated mean PTAT change for 145 sires with 40 to 100 first crop and ≥200 second crop daughters was −0.33, −0.20, −0.13, −0.28, and −0.12 with ST, only first records, only last records, updated pedigrees, and allowing separate parent groups (PGs) for sires and dams after updating the pedigrees, respectively. The percentages of sires showing PTAT decline were reduced from 74.5 (with ST) to 57.3 by using only the last records of cows, and to 56.4 by allowing separate UPGs for sires and dams after updating the pedigrees. Though updating of the pedigrees alone was not effective, separate UPGs for sires together with additional pedigree was helpful in reducing the bias

    Muons and emissivities of neutrinos in neutron star cores

    Get PDF
    In this work we consider the role of muons in various URCA processes relevant for neutrino emissions in the core region of neutron stars. The calculations are done for β\beta--stable nuclear matter with and without muons. We find muons to appear at densities ρ=0.15\rho = 0.15 fm3^{-3}, slightly around the saturation density for nuclear matter ρ0=0.16\rho_0 =0.16 fm3^{-3}. The direct URCA processes for nucleons are forbidden for densities below ρ=0.5\rho = 0.5 fm3^{-3}, however the modified URCA processes with muons (n+Np+N+μ+νμ,p+N+μn+N+νμ(n+N\rightarrow p+N +\mu +\overline{\nu}_{\mu}, p+N+\mu \rightarrow n+N+\nu_{\mu}), where NN is a nucleon, result in neutrino emissivities comparable to those from (n+Np+N+e+νe,p+N+en+N+νe(n+N\rightarrow p+N +e +\overline{\nu}_e, p+N+e \rightarrow n+N+\nu_e). This opens up for further possibilities to explain the rapid cooling of neutrons stars. Superconducting protons reduce however these emissivities at densities below 0.40.4 fm3^{-3}.Comment: 14 pages, Revtex style, 3 uuencoded figs include

    Core-Collapse Very Massive Stars: Evolution, Explosion, and Nucleosynthesis of Population III 500 -- 1000 MM_{\odot} Stars

    Full text link
    We calculate evolution, collapse, explosion, and nucleosynthesis of Population III very-massive stars with 500MM_{\odot} and 1000MM_{\odot}. Presupernova evolution is calculated in spherical symmetry. Collapse and explosion are calculated by a two-dimensional code, based on the bipolar jet models. We compare the results of nucleosynthesis with the abundance patterns of intracluster matter, hot gases in M82, and extremely metal-poor stars in the Galactic halo. It was found that both 500MM_{\odot} and 1000MM_{\odot} models enter the region of pair-instability but continue to undergo core collapse. In the presupernova stage, silicon burning regions occupy a large fraction, more than 20% of the total mass. For moderately aspherical explosions, the patterns of nucleosynthesis match the observational data of both intracluster medium and M82. Our results suggest that explosions of Population III core-collapse very-massive stars contribute significantly to the chemical evolution of gases in clusters of galaxies. For Galactic halo stars, our [O/Fe] ratios are smaller than the observational abundances. However, our proposed scenario is naturally consistent with this outcome. The final black hole masses are 230M\sim 230M_{\odot} and 500M\sim 500M_{\odot} for the 500M500M_{\odot} and 1000MM_{\odot} models, respectively. This result may support the view that Population III very massive stars are responsible for the origin of intermediate mass black holes which were recently reported to be discovered.Comment: 49 pages, 49 figure files, accepted to ApJ (2006, 645, 2

    Transition Between Ground State and Metastable States in Classical 2D Atoms

    Full text link
    Structural and static properties of a classical two-dimensional (2D) system consisting of a finite number of charged particles which are laterally confined by a parabolic potential are investigated by Monte Carlo (MC) simulations and the Newton optimization technique. This system is the classical analog of the well-known quantum dot problem. The energies and configurations of the ground and all metastable states are obtained. In order to investigate the barriers and the transitions between the ground and all metastable states we first locate the saddle points between them, then by walking downhill from the saddle point to the different minima, we find the path in configurational space from the ground state to the metastable states, from which the geometric properties of the energy landscape are obtained. The sensitivity of the ground-state configuration on the functional form of the inter-particle interaction and on the confinement potential is also investigated
    corecore