21 research outputs found

    FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer

    Get PDF
    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.Oncogene advance online publication, 22 December 2014; doi:10.1038/onc.2014.421.published_or_final_versio

    The Effect of Extrusion in the Complex Strain State on the Microstructure and Mechanical Properties of MgAlZn Magnesium Alloys

    No full text
    The paper presents the results of tests concerning the effect of the extrusion process in the complex strain state on the microstructure and properties of one of magnesium alloy with aluminium, zinc and manganese, designated AZ61. Due to its specific gravity, it is increasingly being used in the automotive and aerospace industries to reduce the weight of structural elements. As a result of plastic deformation processes, rods with a diameter of 8, 6 and 4 mm were obtained from AZ61 magnesium alloy. The microstructure analysis was performed using light and electron microscopy (STEM) techniques in the initial state and afterplastic deformation. Microstructure studies were supplemented with a quantitative analysis using the Metilo program. A number of stereological parameters were determined: average diameter of grain, shape factor. A static tensile test was carried out at 250ºC and 300ºC, at deformation rates of 0.01, 0.001 and 0.0001 m·s-1. Better plastic properties after deformation using KoBo methodwere obtained than with conventional extrusion

    The Influence of Deformation Method on the Microstructure and Properties of Magnesium Alloy WE43

    No full text
    The article presents tests results of the influence of deformation methods on the microstructure and properties of alloy WE43. There were direct extrusion tests and extrusion with KoBo method performed. An assessment of the influence of the methods of deformation on the microstructure and the mechanical properties of the achieved rods from alloy WE43 was conducted. There was an analysis of microstructure carried out with the use of light and scanning microscopy techniques in the initial state and after plastic deformation. Static tensile test was conducted in temperature of 350°C at a speed of 0.0001 m·s-1 and microhardness measurements were performed of HV0.2. On the basis of the achieved mechanical tests results it was stated that in the temperature of 350°C for samples deformed with the use of KoBo method there was an effect of superplastic flow found. The value of elongation achieved was 250% which was 3 times higher than in case of classic extrusion (80%)

    Dual rolls equal channel extrusion as unconventional SPD process of the ultralow-carbon steel: finite element simulation, experimental investigations and microstructural analysis

    No full text
    The paper presents results of FEM modelling as well as properties and microstructure of the ultralow-carbon ferritic steel after the unconventional SPD process-DRECE (dual rolls equal channel extrusion). Based on the conducted numerical simulation information about the deformation behaviour of a steel strip during the DRECE process was obtained. The simulation results were experimentally verified. The influence of DRECE process on hardness distribution, fracture behaviour and microstructure evolution of the investigated steel was analysed. The increase of steel strength properties after subsequent deformation passes was confirmed. The microstructural investigations revealed that the processed strips exhibit the dislocation cell microstructure and subgrains with mostly low-angle grain boundaries. The grains after processing had relatively high dislocation density and intense microband formation was observed. It was also proved that this unconventional SPD method fosters high grain refinement.Web of Science211art. no. 2
    corecore