39 research outputs found

    Quantum dynamics of Bose-Hubbard Hamiltonians beyond Hartree-Fock-Bogoliubov: The Bogoliubov backreaction approximation

    Full text link
    e formulate a method for studying the quantum field dynamics of ultracold Bose gases confined within optical lattice potentials, within the lowest Bloch-band Bose-Hubbard model. Our formalism extends the two-sites results of Phys. Rev. Lett. {\bf86}, 000568 (2001) to the general case of MM lattice sites. The methodology is based on mapping the Bose-Hubbard Hamiltonian to an SU(M)SU(M) pseudospin problem and truncating the resulting hierarchy of dynamical equations for correlation functions, up to pair-correlations between SU(M)SU(M) generators. Agreement with few-site exact many-particle calculations is consistently better than the corresponding Hartree-Fock-Bogoliubov approximation. Moreover, our approximation compares favorably with a more elaborate two-particle irreducible effective action formalism, at a fraction of the analytic and numerical effort.Comment: 8 pages, 7 figure

    Vortex solitons in dipolar Bose-Einstein Condensates

    Full text link
    We predict solitary vortices in quasi-planar condensates of dipolar atoms, polarized parallel to the confinement direction, with the effective sign of the dipole-dipole interaction inverted by means of a rapidly rotating field. Energy minima corresponding to vortex solitons with topological charges {% \ell}=1 and 2 are predicted for moderately strong dipole-dipole interaction, using an axisymmetric Gaussian ansatz. The stability of the solitons with =1\ell =1 is confirmed by full 3D simulations, whereas their counterparts with =2\ell =2 are found to be unstable against splitting into a set of four fragments (quadrupole).Comment: 6 pages, 6 figure

    Robust sub-shot-noise measurement via Rabi-Josephson oscillations in bimodal Bose-Einstein condensates

    Full text link
    Mach-Zehnder atom interferometry requires hold-time phase-squeezing to attain readout accuracy below the standard quantum limit. This increases its sensitivity to phase-diffusion, restoring shot-noise scaling of the optimal signal-to-noise ratio, sos_o, in the presence of interactions. The contradiction between the preparations required for readout accuracy and robustness to interactions, is removed by monitoring Rabi-Josephson oscillations instead of relative-phase oscillations during signal acquisition. Optimizing sos_o with a Gaussian squeezed input, we find that hold-time number squeezing satisfies both demands and that sub-shot-noise scaling is retained even for strong interactions.Comment: 6 pages, 4 figure

    Many-body effects on adiabatic passage through Feshbach resonances

    Full text link
    We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms Gamma on sweep rate alpha, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law GammaalphaGamma\propto alpha is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law Gammaalpha1/3Gamma\propto alpha^{1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.Comment: 9 pages, 9 figure

    Nonlinear adiabatic passage from fermion atoms to boson molecules

    Full text link
    We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction Γ\Gamma on the sweep rate α\alpha varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number NN. The power-law is linear, Γα\Gamma \propto \alpha, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and Γα1/3\Gamma \propto \alpha^{1/3} when it is larger. Experimental data agree better with a linear dependence than with an exponential Landau-Zener fit, indicating that many-body effects are significant in the atom-molecule conversion process.Comment: 5 pages, 4 figure

    An ansatz for the nonlinear Demkov-Kunike problem for cold molecule formation

    Full text link
    We study nonlinear mean-field dynamics of ultracold molecule formation in the case when the external field configuration is defined by the level-crossing Demkov-Kunike model, characterized by a bell-shaped coupling and finite variation of the detuning. Analyzing the fast sweep rate regime of the strong interaction limit, which models a situation when the peak value of the coupling is large enough and the resonance crossing is sufficiently fast, we construct a highly accurate ansatz to describe the temporal dynamics of the molecule formation in the mentioned interaction regime. The absolute error of the constructed approximation is less than 3*10^-6 for the final transition probability while at certain time points it might increase up to 10^-3. Examining the role of the different terms in the constructed approximation, we prove that in the fast sweep rate regime of the strong interaction limit the temporal dynamics of the atom-molecule conversion effectively consists of the process of resonance crossing, which is governed by a nonlinear equation, followed by atom-molecular coherent oscillations which are basically described by a solution of the linear problem, associated with the considered nonlinear one.Comment: Accepted for publication in J. Contemp. Phys. (Armenian National Academy of Sciences) 8 pages, 4 figure

    Demkov-Kunike model for cold atom association: weak interaction regime

    Full text link
    We study the nonlinear mean-field dynamics of molecule formation at coherent photo- and magneto-association of an atomic Bose-Einstein condensate for the case when the external field configuration is defined by the quasi-linear level crossing Demkov-Kunike model, characterized by a bell-shaped pulse and finite variation of the detuning. We present a general approach to construct an approximation describing the temporal dynamics of the molecule formation in the weak interaction regime and apply the developed method to the nonlinear Demkov-Kunike problem. The presented approximation, written as a scaled solution to the linear problem associated to the nonlinear one we treat, contains fitting parameters which are determined through a variational procedure. Assuming that the parameters involved in the solution of the linear problem are not modified, we suggest an analytical expression for the scaling parameter.Comment: 6 pages, 4 figure

    Weak coupling regime of the Landau-Zener transition for association of an atomic Bose-Einstein condensate

    Full text link
    In the framework of a basic semiclassical time-dependent nonlinear two-state problem, we study the weak coupling limit of the nonlinear Landau-Zener transition at coherent photo- and magneto-association of an atomic Bose-Einstein condensate. Using an exact third-order nonlinear differential equation for the molecular state probability, we develop a variational approach which enables us to construct an accurate analytic approximation describing time dynamics of the coupled atom-molecular system for the case of weak coupling. The approximation is written in terms of the solution to an auxiliary linear Landau-Zener problem with some effective Landau-Zener parameter. The dependence of this effective parameter on the input Landau-Zener parameter is found to be unexpected: as the generic Landau-Zener parameter increases, the effective Landau-Zener parameter first monotonically increases (starting from zero), reaches its maximal value and then monotonically decreases again reaching zero at some point. The constructed approximation quantitatively well describes many characteristics of the time dynamics of the system, in particular, it provides a highly accurate formula for the final transition probability to the molecular state. The present result for the final transition probability improves the accuracy of the previous approximation by Ishkhanyan et al. [Phys. Rev. A 69, 043612 (2004); J. Phys. A 38, 3505 (2005)] by order of magnitude.Comment: 7 pages, 3 figure

    Quadratic-nonlinear Landau-Zener transition for association of an atomic Bose-Einstein condensate with inter-particle elastic interactions included

    Full text link
    We study the strong coupling limit of a quadratic-nonlinear Landau-Zener problem for coherent photo- and magneto-association of cold atoms taking into account the atom-atom, atom-molecule, and molecule-molecule elastic scattering. Using an exact third-order nonlinear differential equation for the molecular state probability, we develop a variational approach which enables us to construct a highly accurate and simple analytic approximation describing the time dynamics of the coupled atom-molecule system. We show that the approximation describing time evolution of the molecular state probability can be written as a sum of two distinct terms; the first one, being a solution to a limit first-order nonlinear equation, effectively describes the process of the molecule formation while the second one, being a scaled solution to the linear Landau-Zener problem (but now with negative effective Landau-Zener parameter as long as the strong coupling regime is considered), corresponds to the remaining oscillations which come up when the process of molecule formation is over.Comment: 19 pages, 7 figures, accepted for publication in Eur. Phys. J.
    corecore