11 research outputs found

    Heavy metal sorption by sludge-derived biochar with focus on Pb²⁺ sorption capacity at μg/L concentrations

    No full text
    Abstract Municipal wastewater management causes metal exposure to humans and the environment. Targeted metal removal is suggested to reduce metal loads during sludge reuse and release of effluent to receiving waters. Biochar is considered a low-cost sorbent with high sorption capacity for heavy metals. In this study, heavy metal sorption to sludge-derived biochar (SDBC) was investigated through batch experiments and modeling and compared to that of wood-derived biochar (WDBC) and activated carbon (AC). The aim was to investigate the sorption efficiency at metal concentrations comparable to those in municipal wastewater (<1 mg/L), for which experimental data are lacking and isotherm models have not been verified in previous works. Pb²⁺ removal of up to 83% was demonstrated at concentrations comparable to those in municipal wastewater, at pH 2. SDBC showed superior Pb²⁺ sorption capacity (maximum ~2 mg/g at pH 2) compared to WDBC and AC (<0 and (3.5 ± 0.4) × 10⁻³ mg/g, respectively); however, at the lowest concentration investigated (0.005 mg/L), SDBC released Pb²⁺. The potential risk of release of other heavy metals (i.e., Ni, Cd, Cu, and Zn) needs to be further examined. The sorption capacity of SDBC over a metal concentration span of 0.005–150 mg Pb²⁺/L could be predicted with the Redlich–Peterson model. It was shown that experimental data at concentrations comparable to those in municipal wastewater are necessary to accurately model and predict the sorption capacity of SDBC at these concentrations
    corecore