873 research outputs found
Induced-gravity Inflation and the Density Perturbation Spectrum
Recent experimental determinations of the spectral index describing the
scalar mode spectrum of density perturbations encourage comparison with
predictions from models of the very early universe. Unlike extended inflation,
Induced-gravity Inflation predicts a power spectrum with , in close agreement with the experimental measurements.Comment: 11pp, no figures. Plain LaTeX. HUTP-94/A011. Revised edition --
Forthcoming in Physics Letters
Langevin Analysis of Eternal Inflation
It has been widely claimed that inflation is generically eternal to the
future, even in models where the inflaton potential monotonically increases
away from its minimum. The idea is that quantum fluctuations allow the field to
jump uphill, thereby continually revitalizing the inflationary process in some
regions. In this paper we investigate a simple model of this process,
pertaining to inflation with a quartic potential, in which analytic progress
may be made. We calculate several quantities of interest, such as the expected
number of inflationary efolds, first without and then with various selection
effects. With no additional weighting, the stochastic noise has little impact
on the total number of inflationary efoldings even if the inflaton starts with
a Planckian energy density. A "rolling" volume factor, i.e. weighting in
proportion to the volume at that time, also leads to a monotonically decreasing
Hubble constant and hence no eternal inflation. We show how stronger selection
effects including a constraint on the initial and final states and weighting
with the final volume factor can lead to a picture similar to that usually
associated with eternal inflation.Comment: 22 pages, 2 figure
Holography and Variable Cosmological Constant
An effective local quantum field theory with UV and IR cutoffs correlated in
accordance with holographic entropy bounds is capable of rendering the
cosmological constant (CC) stable against quantum corrections. By setting an IR
cutoff to length scales relevant to cosmology, one easily obtains the currently
observed rho_Lambda ~ 10^{-47} GeV^4, thus alleviating the CC problem. It is
argued that scaling behavior of the CC in these scenarios implies an
interaction of the CC with matter sector or a time-dependent gravitational
constant, to accommodate the observational data.Comment: 7 pages, final version accepted by PR
Quantum effects and superquintessence in the new age of precision cosmology
Recent observations of Type Ia supernova at high redshifts establish that the
dark energy component of the universe has (a probably constant) ratio between
pressure and energy density . The
conventional quintessence models for dark energy are restricted to the range
, with the cosmological constant corresponding to .
Conformally coupled quintessence models are the simplest ones compatible with
the marginally allowed superaccelerated regime (). However, they are
known to be plagued with anisotropic singularities.
We argue here that the extension of the classical approach to the
semiclassical one, with the inclusion of quantum counterterms necessary to
ensure the renormalization, can eliminate the anisotropic singularities
preserving the isotropic behavior of conformally coupled superquintessence
models. Hence, besides of having other interesting properties, they are
consistent candidates to describe the superaccelerated phases of the universe
compatible with the present experimental data.Comment: 7 pages. Essay selected for "Honorable Mention" in the 2004 Awards
for Essays on Gravitation, Gravity Research Foundatio
Ekpyrotic collapse with multiple fields
A scale invariant spectrum of isocurvature perturbations is generated during
collapse in the scaling solution in models where two or more fields have steep
negative exponential potentials. The scale invariance of the spectrum is
realised by a tachyonic instability in the isocurvature field. We show that
this instability is due to the fact that the scaling solution is a saddle point
in the phase space. The late time attractor is identified with a single field
dominated ekpyrotic collapse in which a steep blue spectrum for isocurvature
perturbations is found. Although quantum fluctuations do not necessarily to
disrupt the classical solution, an additional preceding stage is required to
establish classical homogeneity.Comment: 13 pages, 1 figur
Local Conformal Symmetry in Physics and Cosmology
We show how to lift a generic non-scale-invariant action in Einstein frame into a locally conformally invariant (or Weyl-invariant) theory and present a new general form for Lagrangians consistent with Weyl symmetry. Advantages of such a conformally invariant formulation of particle physics and gravity include the possibility of constructing geodesically complete cosmologies. We present a conformal-invariant version of the standard model coupled to gravity, and show how Weyl symmetry may be used to obtain unprecedented analytic control over its cosmological solutions. Within this new framework, generic Friedmann-Robertson-Walker cosmologies are geodesically complete through a series of big crunch-big bang transitions. We discuss a new scenario of cosmic evolution driven by the Higgs field in a âminimalâ conformal standard model, in which there is no new physics beyond the standard model at low energies, and the current Higgs vacuum is metastable as indicated by the latest LHC data
A Dynamical Solution to the Problem of a Small Cosmological Constant and Late-time Cosmic Acceleration
Increasing evidence suggests that most of the energy density of the universe
consists of a dark energy component with negative pressure, a ``cosmological
constant" that causes the cosmic expansion to accelerate. In this paper, we
address the puzzle of why this component comes to dominate the universe only
recently rather than at some much earlier epoch. We present a class of theories
based on an evolving scalar field where the explanation is based entirely on
internal dynamical properties of the solutions. In the theories we consider,
the dynamics causes the scalar field to lock automatically into a negative
pressure state at the onset of matter-domination such that the present epoch is
the earliest possible time, consistent with nucleosynthesis restrictions, when
it can start to dominate.Comment: 5 pages, 3 figure
Cosmological Tracking Solutions
A substantial fraction of the energy density of the universe may consist of
quintessence in the form of a slowly-rolling scalar field. Since the energy
density of the scalar field generally decreases more slowly than the matter
energy density, it appears that the ratio of the two densities must be set to a
special, infinitesimal value in the early universe in order to have the two
densities nearly coincide today.
Recently, we introduced the notion of tracker fields to avoid this initial
conditions problem. In the paper, we address the following questions: What is
the general condition to have tracker fields? What is the relation between the
matter energy density and the equation-of-state of the universe imposed by
tracker solutions? And, can tracker solutions explain why quintessence is
becoming important today rather than during the early universe
Curvature perturbations from ekpyrotic collapse with multiple fields
A scale-invariant spectrum of isocurvature perturbations is generated during
collapse in the ekpyrotic scaling solution in models where multiple fields have
steep negative exponential potentials. The scale invariance of the spectrum is
realized by a tachyonic instability in the isocurvature field. This instability
drives the scaling solution to the late time attractor that is the old
ekpyrotic collapse dominated by a single field. We show that the transition
from the scaling solution to the single field dominated ekpyrotic collapse
automatically converts the initial isocurvature perturbations about the scaling
solution to comoving curvature perturbations about the late-time attractor. The
final amplitude of the comoving curvature perturbation is determined by the
Hubble scale at the transition.Comment: 15 pages, 3 figures, a reference added, to be published in CQG, a
remark on the comoving density perturbation correcte
Scalar-Tensor Gravity in Two 3-brane System
We derive the low-energy effective action of four-dimensional gravity in the
Randall-Sundrum scenario in which two 3-branes of opposite tension reside in a
five-dimensional spacetime. The dimensional reduction with the Ansatz for the
radion field by Charmousis et al., which solves five-dimensional linearized
field equations, results in a class of scalar-tensor gravity theories. In the
limit of vanishing radion fluctuations, the effective action reduces to the
Brans-Dicke gravity in accord with the results of Garriga and Tanaka:
Brans-Dicke gravity with the corresponding Brans-Dicke parameter (for positive tension brane) and (for negative
tension brane). In general the gravity induced a brane belongs to a class of
scalar-tensor gravity with the Brans-Dicke parameter which is a function of the
interval and the radion. In particular, gravity on a positive tension brane
contains an attractor mechanism toward the Einstein gravity.Comment: 8 pages, discussion expanded, references adde
- âŠ