Local Conformal Symmetry in Physics and Cosmology

Abstract

We show how to lift a generic non-scale-invariant action in Einstein frame into a locally conformally invariant (or Weyl-invariant) theory and present a new general form for Lagrangians consistent with Weyl symmetry. Advantages of such a conformally invariant formulation of particle physics and gravity include the possibility of constructing geodesically complete cosmologies. We present a conformal-invariant version of the standard model coupled to gravity, and show how Weyl symmetry may be used to obtain unprecedented analytic control over its cosmological solutions. Within this new framework, generic Friedmann-Robertson-Walker cosmologies are geodesically complete through a series of big crunch-big bang transitions. We discuss a new scenario of cosmic evolution driven by the Higgs field in a “minimal” conformal standard model, in which there is no new physics beyond the standard model at low energies, and the current Higgs vacuum is metastable as indicated by the latest LHC data

    Similar works