708 research outputs found

    When is Multimetric Gravity Ghost-free?

    Full text link
    We study ghosts in multimetric gravity by combining the mini-superspace and the Hamiltonian constraint analysis. We first revisit bimetric gravity and explain why it is ghost-free. Then, we apply our method to trimetric gravity and clarify when the model contains a ghost. More precisely, we prove trimetric gravity generically contains a ghost. However, if we cut the interaction of a pair of metrics, trimetric gravity becomes ghost-free. We further extend the Hamiltonian analysis to general multimetric gravity and calculate the number of ghosts in various models. Thus, we find multimetric gravity with loop type interactions never becomes ghost-free.Comment: 22 pages, 6 figure

    Hawking Radiation from Fluctuating Black Holes

    Get PDF
    Classically, black Holes have the rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate the cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.Comment: 35pages, 4 figure

    Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation

    Full text link
    We study higher curvature corrections to the scalar spectral index, the tensor spectral index, the tensor-to-scalar ratio, and the polarization of gravitational waves. We find that the higher curvature corrections can not be negligible in the dynamics of the scalar field, although they are energetically negligible. Indeed, it turns out that the tensor-to-scalar ratio could be enhanced and the tensor spectral index could be blue due to the Gauss-Bonnet term. We estimate the degree of circular polarization of gravitational waves generated during the slow-roll inflation. We argue that the circular polarization can be observable with the help both of the Gauss-Bonnet and parity violating terms. We also present several examples to reveal observational implications of higher curvature corrections for chaotic inflationary models.Comment: 12 pages, 4 figure

    Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy

    Get PDF
    GaAs nanowires are grown by molecular beam epitaxy using a self-catalyzed, Ga-assisted growth technique. Position control is achieved by nano-patterning a SiO2 layer with arrays of holes with a hole diameter of 85 nm and a hole pitch varying between 200 nm and 2 \mum. Gallium droplets form preferentially at the etched holes acting as catalyst for the nanowire growth. The nanowires have hexagonal cross-sections with {110} side facets and crystallize predominantly in zincblende. The interdistance dependence of the nanowire growth rate indicates a change of the III/V ratio towards As-rich conditions for large hole distances inhibiting NW growth.Comment: 9 pages, 4 figure

    Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-

    Full text link
    Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na de-intercalation from alpha-NaCoO2 and by the floating-zone method, respectively. It has been found that successive phase transitions take place at temperatures Tc1 and Tc2 in both systems. The appearance of the internal magnetic field at Tc1 with decreasing temperature T indicates that the antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined from the data taken for magnetically ordered state are similar to those of gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the CoO2 layers between these systems do not significantly affect their physical properties. For gamma-K0.5CoO2, the quantitative difference of the physical quantities are found from those of beta- and gamma-Na0.5CoO2. The difference between the values of Tci (i = 1 and 2) of these systems might be explained by considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl

    Angle-dependent magnetoresistance in the weakly incoherent interlayer transport regime

    Full text link
    We present comparative studies of the orientation effect of a strong magnetic field on the interlayer resistance of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 samples characterized by different crystal quality. We find striking differences in their behavior which is attributed to the breakdown of the coherent charge transport across the layers in the lower quality sample. In the latter case, the nonoscillating magnetoresistance background is essentially a function of only the out-of-plane field component, in contradiction to the existing theory.Comment: 4 pges, 3 figure

    On the Canonical Formalism for a Higher-Curvature Gravity

    Get PDF
    Following the method of Buchbinder and Lyahovich, we carry out a canonical formalism for a higher-curvature gravity in which the Lagrangian density L{\cal L} is given in terms of a function of the salar curvature RR as L=detgμνf(R){\cal L}=\sqrt{-\det g_{\mu\nu}}f(R). The local Hamiltonian is obtained by a canonical transformation which interchanges a pair of the generalized coordinate and its canonical momentum coming from the higher derivative of the metric.Comment: 11 pages, no figures, Latex fil

    Bound State and Order Parameter Mixing Effect by Nonmagnetic Impurity Scattering in Two-band Superconductors

    Full text link
    We investigate nonmagnetic impurity effects in two-band superconductors, focusing on the effects of interband scatterings. Within the Born approximation, it is known that interband scatterings mix order parameters in the two bands. In particular, only one averaged energy gap appears in the excitation spectrum in the dirty limit. [G. Gusman: J. Phys. Chem. Solids {\bf 28} (1967) 2327.] In this paper, we take into account the interband scattering within the tt-matrix approximation beyond the Born approximation in the previous work. We show that, although the interband scattering is responsible for the mixing effect, this effect becomes weak when the interband scattering becomes very strong. In the strong interband scattering limit, a two-gap structure corresponding to two order parameters recovers in the superconducting density of states. We also show that a bound state appears around a nonmagnetic impurity depending on the phase of interband scattering potential.Comment: 28pages, 10 figure

    Black holes and a scalar field in an expanding universe

    Full text link
    We consider a model of an inhomogeneous universe including a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without including scalar field to show that an averaged scale factor coincides with that of the Friedmann model. In this work we construct the inhomogeneous universe with an massless scalar field, where we assume that the averaged scale factor and scalar field are given by those of the Friedmann model including a scalar field. All of our calculations are carried out in the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to ADM mass if the mass evolves adiabatically, and obtain an equation relating our mass to the averaged scalar field and scale factor. As the results we find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe, and that the time dependence is qualitatively diffenrent according to the sign of the curvature of the universe: the mass increases decelerating in the closed universe case, is constant in the flat case and decreases decelerating in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravitiy with a scalar field potential. Furthermore, we discuss the relation of our results to the uniqueness theorem of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure

    Quantum phase transition in a minimal model for the Kondo effect in a Josephson junction

    Full text link
    We propose a minimal model for the Josephson current through a quantum dot in a Kondo regime. We start with the model that consists of an Anderson impurity connected to two superconducting (SC) leads with the gaps Δα=Δαeiθα\Delta_{\alpha}=|\Delta_{\alpha}| e^{i \theta_{\alpha}}, where α=L,R\alpha = L, R for the lead at left and right. We show that, when one of the SC gaps is much larger than the others ΔLΔR|\Delta_L| \gg |\Delta_R|, the starting model can be mapped exactly onto the single-channel model, which consists of the right lead of ΔR\Delta_R and the Anderson impurity with an extra onsite SC gap of ΔdΓLeiθL\Delta_d \equiv \Gamma_L e^{i \theta_L}. Here θL\theta_L and ΓL\Gamma_L are defined with respect to the starting model, and ΓL\Gamma_L is the level width due to the coupling with the left lead. Based on this simplified model, we study the ground-state properties for the asymmetric gap, ΔLΔR|\Delta_L| \gg |\Delta_R|, using the numerical renormalization group (NRG) method. The results show that the phase difference of the SC gaps ϕθRθL\phi \equiv \theta_R -\theta_L, which induces the Josephson current, disturbs the screening of the local moment to destabilize the singlet ground state typical of the Kondo system. It can also drive the quantum phase transition to a magnetic doublet ground state, and at the critical point the Josephson current shows a discontinuous change. The asymmetry of the two SC gaps causes a re-entrant magnetic phase, in which the in-gap bound state lies close to the Fermi level.Comment: 23 pages, 13 figures, typos are correcte
    corecore