71 research outputs found

    Re/Os constraint on the time-variability of the fine-structure constant

    Full text link
    We argue that the accuracy by which the isochron parameters of the decay 187Re187Os^{187}{\rm Re}\to ^{187}{\rm Os} are determined by dating iron meteorites may not directly constrain the possible time-dependence of the decay rate and hence of the fine-structure constant α\alpha. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the QSO absorption lines are re-examined.Comment: 7 pages, 3 figures; v2, revised top sentence on p.

    Quintessence Models and the Cosmological Evolution of alpha

    Full text link
    The cosmological evolution of a quintessence-like scalar field, phi, coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(phi) and the couplings to matter B(phi) admit common extremum in phi, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(phi), the observational constraints on delta alpha/alpha coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.Comment: 26 pages, 20 eps figure

    On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    Full text link
    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking constraints. We end with the first experimental study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark problems.Comment: To appear in the Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP 2010

    Runaway dilaton and equivalence principle violations

    Full text link
    In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time-variations of the natural "constants" within the reach of near-future experiments.Comment: 4 pages, minor change

    Scalar-Tensor Gravity and Quintessence

    Get PDF
    Scalar fields with inverse power-law effective potentials may provide a negative pressure component to the energy density of the universe today, as required by cosmological observations. In order to be cosmologically relevant today, the scalar field should have a mass mϕ=O(1033eV)m_\phi = O(10^{-33} {\mathrm eV}), thus potentially inducing sizable violations of the equivalence principle and space-time variations of the coupling constants. Scalar-tensor theories of gravity provide a framework for accommodating phenomenologically acceptable ultra-light scalar fields. We discuss non-minimally coupled scalar-tensor theories in which the scalar-matter coupling is a dynamical quantity. Two attractor mechanisms are operative at the same time: one towards the tracker solution, which accounts for the accelerated expansion of the Universe, and one towards general relativity, which makes the ultra-light scalar field phenomenologically safe today. As in usual tracker-field models, the late-time behavior is largely independent on the initial conditions. Strong distortions in the cosmic microwave background anisotropy spectra as well as in the matter power spectrum are expected.Comment: 5 pages, 4 figure

    Variable rest masses in 5-dimensional gravitation confronted with experimental data

    Full text link
    Cosmological solutions of Einstein equation for a \mbox{5-dimensional} space-time, in the case of a dust-filled universe, are presented. With these solutions we are able to test a hypothetical relation between the rest mass of a particle and the 5th5^{\rm th} dimension. Comparison with experiment strongly refutes the implied dependence of the rest mass on the cosmological time.Comment: Some references adde

    Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock

    Get PDF
    Over a two-year duration, we have compared the frequency of the 199Hg+ 5d106s 2S 1/2 (F=0) 5d9 6s2 2D 5/2 (F=2) electric-quadrupole transition at 282 nm with the frequency of the ground-state hyperfine splitting in neutral 133Cs. These measurements show that any fractional time variation of the ratio nu(Cs)/nu(Hg) between the two frequencies is smaller than +/- 7 10^-15 / yr (1 sigma uncertainty). According to recent atomic structure calculations, this sets an upper limit to a possible fractional time variation of g(Cs) m_e / m_p alpha^6.0 at the same level.Comment: 4 pages with 3 figures. RevTeX 4, Submitted to Phys. Rev. Let

    Limits on cosmological variation of quark masses and strong interaction

    Get PDF
    We discuss limits on variation of (mq/ΛQCD)(m_q/\Lambda_{QCD}). The results are obtained by studying nαn-\alpha-interaction during Big Bang, Oklo natural nuclear reactor data and limits on variation of the proton gg-factor from quasar absorpion spectra.Comment: 5 pages, RevTe

    A two-scalar model for a small but nonzero cosmological constant

    Get PDF
    We revisit a model of the two-scalar system proposed previously for understanding a small but nonzero cosmological constant. The model provides solutions of the scalar-fields energy ρs\rho_s which behaves truly constant for a limited time interval rather than in the way of tracker- or scaling-type variations. This causes a mini-inflation, as indicated by recent observations. As another novel feature, ρs\rho_s and the ordinary matter density ρm\rho_m fall off always side by side, but interlacing, also like (time)2^{-2} as an overall behavior in conformity with the scenario of a decaying cosmological constant. A mini-inflation occurs whenever ρs\rho_s overtakes ρm\rho_m, which may happen more than once, shedding a new light on the coincidence problem. We present a new example of the solution, and offer an intuitive interpretation of the mechanism of the nonlinear dynamics. We also discuss a chaos-like nature of the solution.Comment: 9 pages plus 7 figure
    corecore