581 research outputs found

    Detection of spin polarization with a side coupled quantum dot

    Full text link
    We propose realistic methods to detect local spin polarization, which utilize a quantum dot side coupled to the target system. By choosing appropriate states in the dot, we can put spin selectivity to the dot and detect spins in the target with small disturbance. We also present an experiment which realizes one of the proposed spin detection schemes in magnetic fields.Comment: 5 pages, 6 figure

    Spin filtering by a periodic nanospintronic devices

    Full text link
    For a linear chain of diamond-like elements, we show that the Rashba spin-orbit interaction (which can be tuned by a perpendicular gate voltage) and the Aharonov-Bohm flux (due to a perpendicular magnetic field) can combine to select only one propagating ballistic mode, for which the electronic spins are fully polarized along a direction that can be tuned by the electric and magnetic fields and by the electron energy. All the other modes are evanescent. For a wide range of parameters, this chain can serve as a spin filter.Comment: Published versio

    Topological classification of vortex-core structures of spin-1 Bose-Einstein condensates

    Full text link
    We classify vortex-core structures according to the topology of the order parameter space. By developing a method to characterize how the order parameter changes inside the vortex core. We apply this method to the spin-1 Bose-Einstein condensates and show that the vortex-core structures are classified by winding numbers that are locally defined in the core region. We also show that a vortex-core structure with a nontrivial winding number can be stabilized under a negative quadratic Zeeman effect.Comment: 16 pages, 6 figure

    Filtering and analyzing mobile qubit information via Rashba-Dresselhaus-Aharonov-Bohm interferometers

    Full text link
    Spin-1/2 electrons are scattered through one or two diamond-like loops, made of quantum dots connected by one-dimensional wires, and subject to both an Aharonov-Bohm flux and (Rashba and Dresselhaus) spin-orbit interactions. With some symmetry between the two branches of each diamond, and with appropriate tuning of the electric and magnetic fields (or of the diamond shapes) this device completely blocks electrons with one polarization, and allows only electrons with the opposite polarization to be transmitted. The directions of these polarizations are tunable by these fields, and do not depend on the energy of the scattered electrons. For each range of fields one can tune the site and bond energies of the device so that the transmission of the fully polarized electrons is close to unity. Thus, these devices perform as ideal spin filters, and these electrons can be viewed as mobile qubits; the device writes definite quantum information on the spinors of the outgoing electrons. The device can also read the information written on incoming polarized electrons: the charge transmission through the device contains full information on this polarization. The double-diamond device can also act as a realization of the Datta-Das spin field-effect transistor.Comment: 13 pages, 8 figure

    Anomalous In-Plane Anisotropy of the Onset of Superconductivity in (TMTSF)2ClO4

    Get PDF
    We report the magnetic field-amplitude and field-angle dependence of the superconducting onset temperature Tc_onset of the organic superconductor (TMTSF)2ClO4 in magnetic fields H accurately aligned to the conductive ab' plane. We revealed that the rapid increase of the onset fields at low temperatures occurs both for H // b' and H // a, irrespective of the carrier confinement. Moreover, in the vicinity of the Pauli limiting field, we report a shift of a principal axis of the in-plane field-angle dependence of Tc_onset away from the b' axis. This feature may be related to an occurrence of Fulde-Ferrell-Larkin-Ovchinnikov phases.Comment: 4 pages, 4 figure

    Nearly free electrons in the layered oxide superconductor Ag5Pb2O6

    Full text link
    We present first measurements of quantum oscillations in the layered oxide superconductor Ag5Pb2O6. From a detailed angular and temperature dependent study of the dHvA effect we determine the electronic structure and demonstrate that the electron masses are very light, m^* is approximately equalt to 1.2 m_e. The Fermi surface we observe is essentially that expected of nearly-free electrons - establishing Ag5Pb2O6 as the first known example of a monovalent, nearly-free electron superconductor at ambient pressure.Comment: 4 pages, 3 figure

    Chaos in Static Axisymmetric Spacetimes I : Vacuum Case

    Full text link
    We study the motion of test particle in static axisymmetric vacuum spacetimes and discuss two criteria for strong chaos to occur: (1) a local instability measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which is closely related to an unstable periodic orbit in general relativity. We analyze several static axisymmetric spacetimes and find that the first criterion is a sufficient condition for chaos, at least qualitatively. Although some test particles which do not satisfy the first criterion show chaotic behavior in some spacetimes, these can be accounted for the second criterion.Comment: More comments for the quantitative estimation of chaos are added, and some inappropriate terms are changed. This will appear on Class. Quant. Gra

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure

    Designing isolation guidelines for COVID-19 patients with rapid antigen tests

    Get PDF
    新型コロナウイルス感染者の隔離短縮は可能か?. 京都大学プレスリリース. 2022-08-24.Appropriate isolation guidelines for COVID-19 patients are warranted. Currently, isolating for fixed time is adopted in most countries. However, given the variability in viral dynamics between patients, some patients may no longer be infectious by the end of isolation, whereas others may still be infectious. Utilizing viral test results to determine isolation length would minimize both the risk of prematurely ending isolation of infectious patients and the unnecessary individual burden of redundant isolation of noninfectious patients. In this study, we develop a data-driven computational framework to compute the population-level risk and the burden of different isolation guidelines with rapid antigen tests (i.e., lateral flow tests). Here, we show that when the detection limit is higher than the infectiousness threshold values, additional consecutive negative results are needed to ascertain infectiousness status. Further, rapid antigen tests should be designed to have lower detection limits than infectiousness threshold values to minimize the length of prolonged isolation
    corecore