60 research outputs found
Human immunodeficiency virus infection and cerebral malaria in children in Uganda: a case-control study
<p>Abstract</p> <p>Background</p> <p>Human immunodeficiency virus (HIV)-1 infection increases the burden of malaria by increasing susceptibility to infection and decreasing the response to malarial treatment. HIV-1 has also been found to suppress the immune system and predispose to severe forms of malaria in adults. There is still a paucity of data on the association between HIV-1 infection and cerebral malaria in children. The aim of this study was to determine whether HIV-1 infection is a risk factor for cerebral malaria in children.</p> <p>Method</p> <p>We conducted an unmatched case-control study, in which 100 children with cerebral malaria were compared with 132 with uncomplicated malaria and 120 with no malaria. In stratified analyses we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for age.</p> <p>Results</p> <p>HIV-1 infection was present in 9% of children with cerebral malaria compared to 2.3% in uncomplicated malaria (age-adjusted odds ratio (aOR) 5.94 (95% confidence interval (CI) 1.36-25.94, p = 0.012); and 2.5% in children with no malaria (aOR 3.85 (95% CI0.99-14.93, p = 0.037). The age-adjusted odds of being HIV-positive among children with cerebral malaria compared to the control groups (children with uncomplicated malaria and no malaria) was 4.98 (95% CI 1.54-16.07), p-value = 0.003.</p> <p>Conclusions</p> <p>HIV-1 infection is associated with clinical presentation of cerebral malaria in children. Clinicians should ensure that children diagnosed with HIV infection are initiated on cotrimoxazole prophylaxis as soon as the diagnosis is made and caretakers counselled on the importance of adherence to the cotrimoxazole towards reducing the risk of acquiring <it>P.falciparum </it>malaria and associated complications such as cerebral malaria. Other malaria preventive measures such as use of insecticide-treated mosquito nets should also be emphasized during counselling sessions.</p
Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood Transfusion in Severe Malarial Anemia
Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa, one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced hemolysis in hospitalized children with either SMA or mild malaria (MM). Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9), p<0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor 1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was quantified using several indirect markers (LDH, alpha-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio 61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered reticulocyte production index (RPI, p<0.05). Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development
A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices
Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.Research in this publication was supported by the National Institutes of Health Small Business Innovation Research program under award number R44HL114246 as a subcontract to the University of Oklahoma from VADovations and NIH grant R21HL132286 to DWS and TAS.
Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
A Role for Fetal Hemoglobin and Maternal Immune IgG in Infant Resistance to Plasmodium falciparum Malaria
In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs--cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood
Computer vision for microscopy diagnosis of malaria
This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided
Etude de la transmission du paludisme dans une future zone d'essai vaccinal en forêt équatoriale du sud Cameroun
Pour préparer une future zone d'essai d'un vaccin antigamète, nous avons réalisé, conjointement avec des études parasitologiques et immunologiques, une étude entomologique longitudinale de juin 1997 à mai 1998, à 100 km à l'est de Yaoundé, dans deux villages proches en zone forestière équatoriale du sud Cameroun. Koundou est situé au bord de l'axe routier en milieu forestier ouvert et dégradé avec, en mosaïque au sein de la forêt, des cultures vivrières ou de rente. Ebolakounou est situé à 5 km de la route dans un milieu forestier plus fermé avec très peu de grandes parcelles cultivées. Les récoltes de moustiques ont été faites bimensuellement, avec des captureurs volontaires à l'intérieur de dix maisons, ce qui nous a permis d'observer 176 piqûres infectées/homme/an à Koundou (47,7% pour #An. moucheti et 5% pour #An. funestus) et seulement 17,7 pi/h/an à Ebolakounou, uniquement imputable à #An. gambia. La transmission est donc dix fois plus intense dans le village l'environnement dégradé par rapport à celui situé en zone forestière. (Résumé d'auteur
Comparison of artificial membrane feeding with direct skin feeding to estimate infectiousness of Plasmodium falciparum gametocyte carriers to mosquitoes
Human infectiousness to mosquitoes can be estimated by 2 tests : direct feeding on the skin and membrane feeding on venous blood. To validate the membrane feeding assay, the infectiousness of #Plasmodium falciparum gametocyte carriers to #Anopheles gambiae was estimated by these 2 methods in the same individuals in a rural area of Cameroon. Results from 37 experiments showed that direct feeding gave significantly higher infection rates than membrane feeding. We observed an average of 19.4% infected mosquitoes by direct feeding compared with 12.1% by membrane feeding, and a mean oocyst load of 5.63 by direct feeding compared with 2.65 by membrane feeding. However, there was a very good concordance between the 2 tests : 84.3% with the Kappa test on percentages of infected mosquitoes and 98.7% with the interclass correlation coefficient on oocyst loads. In addition, we found a good linear correlation between the 2 methods. (Résumé d'auteur
- …