1,146 research outputs found

    El parlache

    Get PDF

    Laser assisted decay of quasistationary states

    Full text link
    The effects of intense electromagnetic fields on the decay of quasistationary states are investigated theoretically. We focus on the parameter regime of strong laser fields and nonlinear effects where an essentially nonperturbative description is required. Our approach is based on the imaginary time method previously introduced in the theory of strong-field ionization. Spectra and total decay rates are presented for a test case and the results are compared with exact numerical calculations. The potential of this method is confirmed by good quantitative agreement with the numerical results.Comment: 24 pages, 5 figure

    Vacuum Boundary Effects

    Full text link
    The effect of boundary conditions on the vacuum structure of quantum field theories is analysed from a quantum information viewpoint. In particular, we analyse the role of boundary conditions on boundary entropy and entanglement entropy. The analysis of boundary effects on massless free field theories points out the relevance of boundary conditions as a new rich source of information about the vacuum structure. In all cases the entropy does not increase along the flow from the ultraviolet to the infrared.Comment: 10 page

    Vacuum Energy and Renormalization on the Edge

    Full text link
    The vacuum dependence on boundary conditions in quantum field theories is analysed from a very general viewpoint. From this perspective the renormalization prescriptions not only imply the renormalization of the couplings of the theory in the bulk but also the appearance of a flow in the space of boundary conditions. For regular boundaries this flow has a large variety of fixed points and no cyclic orbit. The family of fixed points includes Neumann and Dirichlet boundary conditions. In one-dimensional field theories pseudoperiodic and quasiperiodic boundary conditions are also RG fixed points. Under these conditions massless bosonic free field theories are conformally invariant. Among all fixed points only Neumann boundary conditions are infrared stable fixed points. All other conformal invariant boundary conditions become unstable under some relevant perturbations. In finite volumes we analyse the dependence of the vacuum energy along the trajectories of the renormalization group flow providing an interesting framework for dark energy evolution. On the contrary, the renormalization group flow on the boundary does not affect the leading behaviour of the entanglement entropy of the vacuum in one-dimensional conformally invariant bosonic theories.Comment: 10 pages, 1 eps figur

    On a factorization of second order elliptic operators and applications

    Full text link
    We show that given a nonvanishing particular solution of the equation (divpgrad+q)u=0 (1) the corresponding differential operator can be factorized into a product of two first order operators. The factorization allows us to reduce the equation (1) to a first order equation which in a two-dimensional case is the Vekua equation of a special form. Under quite general conditions on the coefficients p and q we obtain an algorithm which allows us to construct in explicit form the positive formal powers (solutions of the Vekua equation generalizing the usual powers of the variable z). This result means that under quite general conditions one can construct an infinite system of exact solutions of (1) explicitly, and moreover, at least when p and q are real valued this system will be complete in ker(divpgrad+q) in the sense that any solution of (1) in a simply connected domain can be represented as an infinite series of obtained exact solutions which converges uniformly on any compact subset of . Finally we give a similar factorization of the operator (divpgrad+q) in a multidimensional case and obtain a natural generalization of the Vekua equation which is related to second order operators in a similar way as its two-dimensional prototype does

    Nonadiabatic pumping in classical and quantum chaotic scatterers

    Full text link
    We study directed transport in periodically forced scattering systems in the regime of fast and strong driving where the dynamics is mixed to chaotic and adiabatic approximations do not apply. The model employed is a square potential well undergoing lateral oscillations, alternatively as two- or single-parameter driving. Mechanisms of directed transport are analyzed in terms of asymmetric irregular scattering processes. Quantizing the system in the framework of Floquet scattering theory, we calculate directed currents on basis of transmission and reflection probabilities obtained by numerical wavepacket scattering. We observe classical as well as quantum transport beyond linear response, manifest in particular in a non-zero current for single-parameter driving where according to adiabatic theory, it should vanish identically.Comment: 13 pages, 8 figure

    Evolution of winter precipitation in the Nile river watershed since the last glacial

    Get PDF
    Between 14.5 and 5 ka, the Sahara was vegetated owing to a wet climate during the African humid period. However, the climatic factors sustaining the “green Sahara” are still a matter of debate. Particularly the role of winter precipitation is poorly understood. Using the stable hydrogen isotopic composition (δD, where D stands for deuterium) of high molecular weight (HMW) n-alkanoic acids in a marine sediment core from the eastern Mediterranean, we provide a continuous record for winter precipitation in the Nile river delta spanning the past 18 kyr. Pairing the data with δD records from HMW n-alkanes from the same core, we show that HMW n-alkanoic acids constantly derived from the delta, while the HMW n-alkanes also received significant contributions from the headwaters between ∼ 15–1 ka when fluvial runoff enhanced. This enables us to reconstruct the evolution of Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed in parallel. In the delta, the Heinrich stadial 1 (HS1) evolved in two phases, with a dry episode between ∼ 17.5–16.0 ka, followed by wet conditions between ∼ 16–14.5 ka. Winter rainfall enhanced substantially between 11–6 ka, lagging behind the intensification of the summer monsoon by ca. 3 kyr. Heavy winter rainfall resulted from a southern position of the Atlantic storm track combined with elevated sea surface temperatures in the eastern Mediterranean, reinforcing local cyclogenesis. We show that during the green Sahara, monsoon precipitation and Mediterranean winter rainfall were both enhanced and infer that the winter rainfall zone extended southwards, delivering moisture to the Sahara. Our findings corroborate recent hypotheses suggesting that winter rains that extended southward were a crucial addition to the northward displacement of the summer monsoon in helping to sustain a green Sahara.</p

    Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues

    Full text link
    State of the art research and treatment of biological tissues require accurate and efficient methods for describing their mechanical properties. Indeed, micromechanics motivated approaches provide a systematic method for elevating relevant data from the microscopic level to the macroscopic one. In this work the mechanical responses of hyperelastic tissues with one and two families of collagen fibers are analyzed by application of a new variational estimate accounting for their histology and the behaviors of their constituents. The resulting, close form expressions, are used to determine the overall response of the wall of a healthy human coronary artery. To demonstrate the accuracy of the proposed method these predictions are compared with corresponding 3-D finite element simulations of a periodic unit cell of the tissue with two families of fibers. Throughout, the analytical predictions for the highly nonlinear and anisotropic tissue are in agreement with the numerical simulations
    corecore