6 research outputs found

    Menyelami Ilmu Biologi Molekuler dan Genetika dari Buku Genomes 3

    Full text link
    Buku Genomes 3 merupakan buku yang sangat dianjurkan untuk dibaca oleh ilmuwan di era yang sangat pesat akan perkembangan ilmu pengetahuan dan teknologi, khususnya dibidang ilmu molekuler biologi dan genetika. Penulisan buku ini telah disusun dengan sangat hati hati agar mudah dipahami oleh pembaca dan dilengkapi dengan CD-ROM yang dapat dilihat dalam dua format, power point dan JPEG

    BRCA1 Regulates Follistatin Function in Ovarian Cancer and Human Ovarian Surface Epithelial Cells

    Get PDF
    Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells

    Epiprofin/Sp6 regulates Wnt-BMP signaling and the establishment of cellular junctions during the bell stage of tooth development

    Full text link
    Epiprofin/Specificity Protein 6 (Epfn) is a Krüppel-like family (KLF) transcription factor that is critically involved in tooth morphogenesis and dental cell differentiation. However, its mechanism of action is still not fully understood. We have employed both loss-of-function and gain-of-function approaches to address the role of Epfn in the formation of cell junctions in dental cells and in the regulation of junction-associated signal transduction pathways. We have evaluated the expression of junction proteins in bell-stage incisor and molar tooth sections from Epfn(-/-) mice and in dental pulp MDPC-23 cells overexpressing Epfn. In Epfn(-/-) mice, a dramatic reduction occurs in the expression of tight junction and adherens junction proteins and of the adherens-junction-associated β-catenin protein, a major effector of canonical Wnt signaling. Loss of cell junctions and β-catenin in Epfn(-/-) mice is correlated with a clear decrease in bone morphogenetic protein 4 (BMP-4) expression, a decrease in nestin in the tooth mesenchyme, altered cell proliferation, and failure of ameloblast cell differentiation. Overexpression of Epfn in MDPC-23 cells results in an increased cellular accumulation of β-catenin protein, indicative of upregulation of canonical Wnt signaling. Together, these results suggest that Epfn enhances canonical Wnt/β-catenin signaling in the developing dental pulp mesenchyme, a condition that promotes the activity of other downstream signaling pathways, such as BMP, which are fundamental for cellular induction and ameloblast differentiation. These altered signaling events might underlie some of the most prominent dental defects observed in Epfn(-/-) mice, such as the absence of ameloblasts and enamel, and might throw light on developmental malformations of the tooth, including hyperdontia
    corecore