411 research outputs found

    On the π\pi and KK as qqˉq \bar q Bound States and Approximate Nambu-Goldstone Bosons

    Full text link
    We reconsider the two different facets of π\pi and KK mesons as qqˉq \bar q bound states and approximate Nambu-Goldstone bosons. We address several topics, including masses, mass splittings between π\pi and ρ\rho and between KK and KK^*, meson wavefunctions, charge radii, and the KπK-\pi wavefunction overlap.Comment: 15 pages, late

    Di-electron and two-photon widths in charmonium

    Full text link
    The vector and pseudoscalar decay constants are calculated in the framework of the Field Correlator Method. Di-electron widths: Γee(J/ψ)=5.41\Gamma_{ee}(J/\psi)=5.41 keV, Γee(ψ(3686))=2.47\Gamma_{ee}(\psi'(3686))=2.47 keV, Γee(ψ(3770))=0.248\Gamma_{ee}(\psi''(3770))=0.248 keV, in good agreement with experiment, are obtained with the same coupling, αs=0.165\alpha_s=0.165, in QCD radiative corrections. We show that the larger αs=0.191±0.004\alpha_s=0.191\pm 0.004 is needed to reach agreement with experiment for Γγγ(ηc)=7.22\Gamma_{\gamma\gamma}(\eta_c)=7.22 keV, Γγγ(χ(3P0))=3.3\Gamma_{\gamma\gamma} (\chi(^3P_0))=3.3 keV, Γγγ(χ(3P2))=0.54\Gamma_{\gamma\gamma}(\chi(^3P_2))= 0.54 keV, and also for Γ(J/ψ3g)=59.5\Gamma(J/\psi\to 3g)=59.5 keV, Γ(J/ψγ2g)=5.7\Gamma(J/\psi\to \gamma 2g)=5.7 keV. Meanwhile even larger αs=0.238\alpha_s=0.238 gives rise to good description of Γ(ψ3g)=52.7\Gamma(\psi'\to 3g)=52.7 keV, Γ(ψγ2g)=3.5\Gamma(\psi'\to \gamma 2g)= 3.5 keV, and provides correct ratio of the branching fractions: B(J/ψlighthadrons)B(ψlighthadrons)=0.24.\frac{\mathcal{B}(J/\psi\to light hadrons)}{\mathcal{B}(\psi'\to light hadrons)}=0.24.Comment: 8 pages, no figure

    Leptonic widths of high excitations in heavy quarkonia

    Full text link
    Agreement with the measured electronic widths of the ψ(4040)\psi(4040), ψ(4415)\psi(4415), and Υ(11019)\Upsilon (11019) resonances is shown to be reached if two effects are taken into account: a flattening of the confining potential at large distances and a total screening of the gluon-exchange interaction at r\ga 1.2 fm. The leptonic widths of the unobserved Υ(7S)\Upsilon(7S) and ψ(5S)\psi(5S) resonances: Γe+e(Υ(7S))=0.11\Gamma_{e^+e^-}(\Upsilon (7S))=0.11 keV and Γ(ψ(5S))0.54\Gamma(\psi(5S))\approx 0.54 keV are predicted.Comment: 11 pages revtex

    Vector Meson Production at HERA

    Full text link
    We show that the lowest-order QCD calculation in a simple model of elastic vector-meson production does reproduce correctly the ratios of cross sections for rho, phi and J/psi, both in photoproduction and in high-Q2 quasi-elastic scattering. The dependence of the slopes on the mass of the vector meson is reproduced as well. We examine the lower-energy data, and find that the energy dependence of the cross section does not depend on Q2, but may depend on the vector-meson mass.Comment: 12 pages, Latex, 6 figures. Shortened version of the previous paper, which also includes a clearer criticism of the work by Martin, Ryskin and Teubner, hep-ph/960944

    Which factors prognosticate rotational instability following lumbar laminectomy?

    Get PDF
    Purpose: Reduced strength and stiffness of lumbar spinal motion segments following laminectomy may lead to instability. Factors that predict shear biomechanical properties of the lumbar spine were previously published. The purpose of the present study was to predict spinal torsion biomechanical properties with and without laminectomy from a total of 21 imaging parameters. Method: Radiographs and MRI of ten human cadaveric lumbar spines (mean age 75.5, range 59-88 years) were obtained to quantify geometry and degeneration of the motion segments. Additionally, dual X-ray absorptiometry (DXA) scans were performed to measure bone mineral content and density. Facet-sparing lumbar laminectomy was performed either on L2 or L4. Spinal motion segments were dissected (L2-L3 and L4-L5) and tested in torsion, under 1,600 N axial compression. Torsion moment to failure (TMF), early torsion stiffness (ETS, at 20-40 % TMF) and late torsion stiffness (LTS, at 60-80 % TMF) were determined and bivariate correlations with all parameters were established. For dichotomized parameters, independent-sample t tests were used. Results: Univariate analyses showed that a range of geometric characteristics and disc and bone quality parameters were associated with torsion biomechanical properties of lumbar segments. Multivariate models showed that ETS, LTS and TMF could be predicted for segments without laminectomy (
    corecore