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In loading experiments on the lumbar spine, typically three consecutive loading cycles are applied of

which the third cycle is used for analysis. The aim of this study was to investigate whether the use
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a b s t r a c t

of ten instead of three loading cycles reduces effects of viscoelastic behavior in the assessment of range

of motion (ROM) and stiffness around the neutral orientation of the human lumbar spine. To this end,

twelve cadaveric human lumbar spines (L1–L5) were obtained (mean age: 76.9 years). Before testing,

the spines were subjected to a compressive load of 250 N for 1 h. To each spine, ten consecutive loading

cycles were applied (�4 Nm toþ4 Nm) in flexion and extension (FE), lateral bending (LB) and axial

rotation (AR). The ROM and stiffness within the neutral zone were calculated per motion segment

(L2–L3, L3–L4 or L4–L5) from load–displacement data. It was found that the ROM increased

significantly (all po0.001) in all directions after three (FE: 0.07 degree/1.0%, LB: 0.08 degree/1.5%,

and AR: 0.04 degree/1.5%) and after ten loading cycles (FE: 0.20 degree/2.9%, LB: 0.16 degree/3.3%, and

AR: 0.09 degree/3.3%). Stiffness was not significantly affected, but varied considerably over cycles.

Although effects were small, assessment of the tenth cycle instead of the third cycle reduces

viscoelastic effects in repeated measurements of ROM, because the spine is closer to a steady state

condition, while averaging over loading cycles would improve the assessment of stiffness estimates.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Spinal segments are subjected to repeated daily movements
and loading by gravity and muscle forces (Wilke et al., 1999).
Previously it has been shown that mechanical properties of spinal
segments are time-dependent, due to its visco- and poro-elastic
properties (Koeller et al., 1984; Li et al., 1995; van der Veen et al.,
2008; Zilch et al., 1980). Changes in spinal biomechanics are
therefore likely to occur when repeated loading cycles are
applied. These may affect biological behavior during the day
and may act as a confounder in experimental protocols. To our
knowledge, little is known about the effects of repetition in
biomechanical testing of the human lumbar spine.
ll rights reserved.

: þ31 20 444 2357.

yen).
Previously, it has been recommended to perform a set of three
consecutive loading cycles and to analyze the third cycle in spinal
testing (Goel et al., 2006; Wilke et al., 1998b) and most studies
have followed this guideline.

The aim of this study was to investigate whether the use of ten
instead of three loading cycles would improve preconditioning
of the spine and reduce effects of viscoelastic behavior in the
assessment of the range of motion (ROM) and stiffness around the
neutral orientation of the human lumbar spine.
2. Methods

Twelve lumbar spines (L1–L5) were harvested from freshly frozen (�20 1C)

human cadavers (mean age 76.9 years, range 59–90 years). Spines with bridging

osteophytes seen on radiographs were excluded. The spines were thawed before

testing. Excessive soft tissue and muscle tissue was carefully removed, keeping the

anterior and posterior longitudinal ligaments, flavum ligaments, interspinous

ligaments and supraspinous ligaments as well as the facet capsular ligaments

intact. Specimens were kept hydrated using 0.9% saline-soaked gauzes. After

radiographic assessment, spinal segments (L1 and L5) were potted in a casting-

mold and partially buried in a low melting point (48 1C) bismuth alloy. All
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articulating parts were kept free. Preparation of specimens was extensively

described previously (Bisschop et al., 2011, 2012).

The test setup was described previously (Busscher et al., 2009, 2010). Lumbar

spines were placed horizontally in a custom made 4-points bending device in

which pure moments in flexion and extension (FE), lateral bending (LB) and axial

rotation (AR) can be applied, using a hydraulic materials testing machine

(Instron&, model 8872; Instron and IST, Norwood, Canada). Markers containing

3 LED’s were screwed to the anterior surface of the vertebral bodies of L2, L3 and

L4 and to the L5 casting-mold.

Before testing, a compressive preload of 250 N was applied for 1 h. This axial

preload was selected to allow comparison with previous work (Busscher et al.,

2009, 2010) and to minimize the risk of buckling of the whole lumbar spine.

Mechanical testing started immediately after the preloading period. During

testing, no compressive load was applied, again to prevent buckling. Loads were

increased to 4 Nm (Busscher et al., 2009, 2010; Guan, 2007; Wilke et al., 1998b) at

an angular velocity of 0.5 degrees/s (Wilke et al., 1998a, 1998b). At 4 Nm, loading

was decreased, again at 0.5 degrees/s, to reach �4 Nm. Each movement direction

was tested for ten consecutive cycles. Force and displacement of the Instron were

recorded and digitized at 100 Hz (Instron& Fast Track 2). All tests were performed

at room temperature. The first six segments were tested in the order: FE–LB–AR

while the second six segments were tested in the order: AR–FE–LB, to correct for

order effects. Time between different loading directions, needed for converting the

test setup, was approximately 5 min.

Motions of the LEDs on L2, L3, L4 and the L5 casting-mold were recorded at

100 samples/s by a motion analysis system (Optotrak& 3020, Northern Digital Inc.,

Waterloo, ON). Using measured forces and LED displacements, a computer

program (Mathworks, Natick, MA, USA) calculated the load–displacement curves

in the loaded direction for L3 relative to L2, for L4 relative to L3 and for L5 relative

to L4, to quantify the behavior of segments L2–L3, L3–L4 and L4–L5.

For each direction (FE, LB and AR) the ROM (degrees) and stiffness (Nm/degree)

per motion segment (L2–L3, L3–L4 and L4–L5) were calculated from load–

displacement data using Matlab (Mathworks&, Natick, MA, USA). The ROM was

calculated between an applied load of �4 Nm and þ4 Nm. Stiffness was

estimated as the slope of a least squares straight line fit through load–

displacement data within the neutral zone (Smit et al., 2011). When the r2-value

of this fit was below 0.95, stiffness was calculated between �1.0 Nm and

þ1.0 Nm.

To test the effect of repetitive movements, a repeated measures analysis of

variance (ANOVA) was performed with load cycle (using all ten cycles) as a

within-subject factor and spinal level as a between-subject factor. In case of

significant effects of cycle, we performed planned comparisons (paired t-tests)

between all subsequent cycles and, additionally, between cycles one and three,

cycles three and ten and cycles one and ten. Load sequence effects were tested on

the average of ten cycles, using unpaired t-tests. The statistical analyses were

performed using SPSS for Mac version 20.0 (SPSS Incorporated&, Chicago, IL, USA).
3. Results

ROM and stiffness in all loading directions of L2–L3; specimen
08, L2–L3; specimen 09 and L4–L5; specimen 12, were excluded
from analysis due to severely irregular load-displacement curves.
Table 1
Range of motion and stiffness, averaged over spinal levels and per specimen of the first

excluded for analysis; **L4–L5 excluded for analysis).

Range of motion (degrees)

FE LB AR

1st 3rd 10th 1st 3rd 10th 1st 3rd 10

Specimen 01 9.40 9.51 9.68 7.36 7.56 7.74 5.80 5.87 5.
Specimen 02 7.89 7.98 8.29 8.37 8.43 8.43 2.89 2.95 3.
Specimen 03 7.41 7.50 7.74 6.26 6.32 6.49 2.45 2.51 2.
Specimen 04 6.47 6.39 6.34 7.26 7.25 7.34 1.45 1.43 1.
Specimen 05 8.08 8.24 8.34 7.41 7.61 7.65 3.73 3.82 3.
Specimen 06 8.43 8.50 8.68 6.25 6.35 6.51 2.50 2.52 2.
Specimen 07 3.50 3.55 3.62 4.12 4.13 4.22 1.05 1.06 1.
Specimen 08 5.08n 5.18n 5.22n 2.52n 2.55n 2.55n 1.17n 1.20n 1.
Specimen 09 5.02n 5.03n 5.19n 3.89n 3.94n 3.87n 2.79n 2.85n 2.
Specimen 10 8.61 8.63 8.69 6.19 6.29 6.38 4.69 4.74 4.
Specimen 11 4.65 4.72 4.88 3.00 3.06 3.24 2.46 2.52 2.
Specimen 12 4.00nn 4.13nn 4.20nn 3.61nn 3.66nn 3.70nn 1.32nn 1.32nn 1.
Average 6.54 6.61 6.74 5.52 5.60 5.68 2.69 2.73 2.
SD 2.02 2.02 2.06 1.98 2.01 2.03 1.46 1.48 1.
Regarding stiffness, linearity of the fit in 16 of the remaining 198
determinations did not reach an r2-value of 40.95 and for these
fits were made on data obtained between þ1 Nm and �1 Nm
Table 1.

ROM in LB was affected by load sequence (p¼0.03), while FE

(p¼0.27) and AR (p¼0.58) were not. No significant effects of load
sequence on stiffness (FE: p¼0.17; LB: p¼0.26 and AR: p¼0.25)
were found.

ROM was significantly affected by cycle in all directions
(FE: po0.001; LB: po0.001 and FE: po0.001; Fig. 1, Table 2).
No significant effects of segment level or interactions with
segment level were found (Table 2). Fig. 1 and Table 3 show a
significant increase in ROM between the first and third (FE: 0.07
degree/1.0%, LB: 0.08 degree/1.5%, and AR: 0.04 degree/1.5%),
between the third and tenth (FE: 0.13 degree/1.9%, LB: 0.08
degree/1.8%, and AR: 0.05 degree/1.8%) and between the first
and tenth load cycle (FE: 0.20 degree/2.9%, LB: 0.16 degree/3.3%,
and AR: 0.09 degree/3.3%).

Stiffness was not affected by repetitive movement (Fig. 2,
Table 2,) and no significant effects of segment level or interactions
with segment level were found (Table 2).
4. Discussion

We studied the effects of repetitive movement in FE, LB and AR

on ROM and stiffness in twelve human cadaveric lumbar spines.
Repetitive movement increased ROM significantly after three

and ten consecutive loading cycles, while stiffness was unaffected.
Therefore, it seems that only ROM, in all three motion directions, is
influenced by visco- and/or poroelastic properties of the human
lumbar spine. Previously, Wilke et al. (1998a) showed that ambient
conditions are of greater influence on ROM than cycle count is. On
the other hand, Panjabi et al. (1985) found no differences in ROM
after testing his spines for a limited number of cycles in the
morning and afternoon over 13 consecutive days with refrigerated
storage in between tests. Ambient exposure time in our study was
much shorter than in both previous studies.

It has been recommended to use pure moments of 7.5 Nm in
testing lumbar spines and about half of that when testing
osteoporotic spines (Wilke et al., 1998b). Since we tested spines
of elderly donors, which could be osteoporotic, we decided to use
a 4 Nm load level. Comparable load levels were previously used
(Busscher et al., 2009, 2010; Guan, 2007).
, third and tenth cycle. An average over L2–L3, L3–L4 and L4–L5 was used (*L2–L3

Stiffness (Nm/degree)

FE LB AR

th 1st 3rd 10th 1st 3rd 10th 1st 3rd 10th

95 0.21 0.19 0.23 0.32 0.28 0.31 0.25 0.22 0.24
00 0.23 0.20 0.24 0.33 0.34 0.29 1.21 1.15 1.03
57 0.42 0.42 0.41 0.54 0.60 0.40 1.85 1.77 1.83
47 0.91 0.99 0.97 0.56 0.65 0.58 2.14 2.73 1.50
91 0.38 0.43 0.42 0.72 0.71 0.72 1.46 1.52 1.25
55 0.38 0.39 0.39 0.69 0.54 0.55 2.51 2.55 2.43
06 1.54 1.53 1.86 1.42 1.69 1.61 7.99 7.91 8.11
22n 0.65n 0.80n 0.70n 2.47n 2.26n 2.23n 6.40n 5.71n 4.57n

93n 0.66n 0.58n 0.60n 0.94n 1.06n 0.81n 1.93n 1.82n 1.49n

80 0.42 0.38 0.40 0.51 0.46 0.56 0.70 0.75 0.67
59 0.85 0.73 0.73 1.52 1.49 1.36 1.69 1.72 1.77
34nn 0.55nn 1.06nn 0.75nn 2.66nn 2.52nn 3.46nn 6.32nn 5.20nn 6.45nn

78 0.60 0.64 0.64 1.06 1.05 1.07 2.87 2.75 2.61
50 0.37 0.40 0.44 0.80 0.76 0.96 2.54 2.31 2.46



Fig. 1. Effects of repetitive movement on range of motion per spinal segment and also as an average of all spinal segments (meanþSD). In addition, normalized values per

cycle, averaging 12 specimens, are presented below. Significant differences between cycles are now shown (*po0.05; **po0.01 and ***po0.001) (Table 3). Note that

p-values were based on paired t-tests including absolute values instead of normalized values.

Table 2
ANOVA outcomes for the range of motion and stiffness, cycles, level and the

interaction between cycle and level are shown.

FE LB AR

ROM (degrees) Cycle po0.001 po0.001 po0.001
Level p¼0.419 p¼0.719 p¼0.592

Cycle� Level p¼0.870 p¼0.265 p¼0.490

Stiffness (Nm/degree) Cycle p¼0.632 p¼0.545 p¼0.273

Level p¼0.425 p¼0.528 p¼0.405

Cycle� Level p¼0.715 p¼0.396 p¼0.691

Table 3
Follow-up planned comparison showing statistical outcomes of paired t-tests

between cycles. Percentage differences between the first and third; the third and

tenth and the first and tenth cycle were presented with corresponding p-values.

The use of this technique is justified since there were no significant effects for

level or the interaction between level and cycle (Table 2).

ROM FE LB AR

Cycle D (%) p-values D (%) p-values D (%) p-values

1 versus 3 þ1.0 p¼0.005 þ1.5 p¼0.002 þ1.5 p¼0.002

3 versus 10 þ1.9 p¼0.001 þ1.8 po0.001 þ1.8 po0.001

1 versus 10 þ2.9 po0.001 þ3.3 po0.001 þ3.3 po0.001
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One limitation of this study is that we used a preload of 250 N
for 1 h, which is relatively low in perspective of physiological
loading (Adams and Dolan, 1995). Preloading with 250 N was
chosen, since buckling might occur when loading a complete
lumbar spine with a higher load. Another limitation is that we did
not apply axial loading during testing, again to prevent buckling.
While so-called follower loads would allow for axial loading
during bending without buckling, such loads inevitably cause
additional moments of unknown magnitude, which would inter-
fere with the purpose of the present study. Furthermore, we did
not apply complex 3D motions to the spines, whereas during daily
life, the spine is often subjected to a combination of different
loading directions. We tested ten repetitive cycles only, but visual
inspection (Fig. 1) showed that the effect of repetitive movement
for ROM reached a stable phase within ten cycles, while for
stiffness, only apparently random variation was observed (Fig. 2).
Finally, we only used an angular velocity of 0.5 degrees
per second. This velocity is commonly used and fairly low, for
this reason we believe that a moderate change of this velocity
would not affect our results (Wilke et al., 1998a, 1998b).

ROM showed a small but significant increase between the first
and third cycle (0.04–0.08 degrees), but also between the third
and tenth cycle (0.05–0.13 degrees). Wilke et al. (1998b) stated
that at least two precycles before testing are necessary to
minimize viscoelastic effects, because load displacement behavior
of the first two cycles could clearly be distinguished, whereas the
difference between the second and third cycles was considerably
reduced and the third cycle was in many cases nearly identical to
all subsequent cycles. We have shown that viscoelastic effects do
not stop with three cycles. At ten cycles, ROM curves are closer to
an asymptote than at three cycles (Fig. 1). Therefore, in experi-
ments that rely on repeated ROM measurements, preconditioning
with ten cycles instead of three would be indicated to reduce
confounding effects of viscoelasticity. However, the magnitude of



Fig. 2. Effects of repetitive movement on stiffness per spinal segment and also as an average of all spinal segments (meanþSD). In addition, normalized values per cycle,

averaging 12 specimens, are presented below. No significant differences between cycles were found.
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the viscoelastic effects, both between one and three cycles and
between three and ten cycles, is small and it may depend on the
specific goal of the experiments whether or not these effects are
important.

Fig. 2 shows that spinal stiffness varies considerably. As for
ROM, it has also been recommended to analyze the third of three
subsequent loading cycles (Goel et al., 2006; Wilke et al., 1998b).
Since we did not find clear changes in stiffness over repeated load
cycles, our results imply that averaging stiffness values over three
cycles, or better over ten cycles, would improve the precision of
stiffness estimates.

In conclusion, using ten instead of three cycles reduces
viscoelastic effects in repeated measurements, because the spine
is closer to a steady state ROM condition. Averaging stiffness
values over three, or preferably ten, loading cycles improves the
assessment of spinal stiffness.
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