84 research outputs found

    Theory and design of Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y} mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 μ\mum on InP substrates

    Get PDF
    We present a theoretical analysis and optimisation of the properties and performance of mid-infrared semiconductor lasers based on the dilute bismide alloy Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y}, grown on conventional (001) InP substrates. The ability to independently vary the epitaxial strain and emission wavelength in this quaternary alloy provides significant scope for band structure engineering. Our calculations demonstrate that structures based on compressively strained Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y} quantum wells (QWs) can readily achieve emission wavelengths in the 3 -- 5 μ\mum range, and that these QWs have large type-I band offsets. As such, these structures have the potential to overcome a number of limitations commonly associated with this application-rich but technologically challenging wavelength range. By considering structures having (i) fixed QW thickness and variable strain, and (ii) fixed strain and variable QW thickness, we quantify key trends in the properties and performance as functions of the alloy composition, structural properties, and emission wavelength, and on this basis identify routes towards the realisation of optimised devices for practical applications. Our analysis suggests that simple laser structures -- incorporating Inx_{x}Ga1x_{1-x}As1y_{1-y}Biy_{y} QWs and unstrained ternary In0.53_{0.53}Ga0.47_{0.47}As barriers -- which are compatible with established epitaxial growth, provide a route to realising InP-based mid-infrared diode lasers.Comment: Submitted versio

    Modelling spin relaxation in semiconductor quantum wells: modifying the Elliot process

    Get PDF
    A model of the Elliot process for spin relaxation is developed that explicitly incorporates the Dresselhaus spin-splitting of the conduction band in semiconductors lacking an inversion symmetry. It is found that this model reduces to existing models in bulk if the scattering matrices are constructed from a superposition of eigenstates. It is shown that the amplitude for intra-subband spin relaxation disappears in quantum wells on the basis of existing models. However, an amplitude due to the Dresselhaus spin-splitting remains, becoming increasingly important as the well becomes narrower. It is also shown that this component does not disappear for scattering between spin states at the same wavevector. It is concluded that for quantum wells and lower dimensional semiconductors that this modified model should be used in analysis of the spin dynamics

    Combination schemes for turning point prediction

    Get PDF
    We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are commonly used for business cycle analysis. In order to account for parameter uncertainty we consider a Bayesian approach to both estimation and prediction and compare, in terms of statistical accuracy, the individual models and the combined turning point predictions for the United States and Euro area business cycles

    Neues zur Urbanistik der Zivilstädte von Aquincum-Budapest und Carnuntum-Petronell

    Full text link
    corecore