523 research outputs found

    Electron spin relaxation in bulk GaAs for doping densities close to the metal-to-insulator transition

    Get PDF
    We have measured the electron spin relaxation rate and the integrated spin noise power in n-doped GaAs for temperatures between 4 K and 80 K and for doping concentrations ranging from 2.7 x 10^{-15} cm^{-3} to 8.8 x 10^{-16} cm^{-3} using spin noise spectroscopy. The temperature dependent measurements show a clear transition from localized to free electrons for the lower doped samples and confirm mainly free electrons at all temperatures for the highest doped sample. While the sample at the metal-insulator-transition shows the longest spin relaxation time at low temperatures, a clear crossing of the spin relaxation rates is observed at 70 K and the highest doped sample reveals the longest spin relaxation time above 70 K.Comment: 6 pages, 4 figure

    Correlation-Strength Driven Anderson Metal-Insulator Transition

    Get PDF
    The possibility of driving an Anderson metal-insulator transition in the presence of scale-free disorder by changing the correlation exponent is numerically investigated. We calculate the localization length for quasi-one-dimensional systems at fixed energy and fixed disorder strength using a standard transfer matrix method. From a finite-size scaling analysis we extract the critical correlation exponent and the critical exponent characterizing the phase transition.Comment: 3 pages; 2 figure

    Controlled engineering of extended states in disordered systems

    Get PDF
    We describe how to engineer wavefunction delocalization in disordered systems modelled by tight-binding Hamiltonians in d>1 dimensions. We show analytically that a simple product structure for the random onsite potential energies, together with suitably chosen hopping strengths, allows a resonant scattering process leading to ballistic transport along one direction, and a controlled coexistence of extended Bloch states and anisotropically localized states in the spectrum. We demonstrate that these features persist in the thermodynamic limit for a continuous range of the system parameters. Numerical results support these findings and highlight the robustness of the extended regime with respect to deviations from the exact resonance condition for finite systems. The localization and transport properties of the system can be engineered almost at will and independently in each direction. This study gives rise to the possibility of designing disordered potentials that work as switching devices and band-pass filters for quantum waves, such as matter waves in optical lattices.Comment: 14 pages, 11 figure

    The Aharonov-Bohm effect for an exciton

    Full text link
    We study theoretically the exciton absorption on a ring shreded by a magnetic flux. For the case when the attraction between electron and hole is short-ranged we get an exact solution of the problem. We demonstrate that, despite the electrical neutrality of the exciton, both the spectral position of the exciton peak in the absorption, and the corresponding oscillator strength oscillate with magnetic flux with a period Φ0\Phi_0---the universal flux quantum. The origin of the effect is the finite probability for electron and hole, created by a photon at the same point, to tunnel in the opposite directions and meet each other on the opposite side of the ring.Comment: 13 RevTeX 3.0 pages plus 4 EPS-figures, changes include updated references and an improved chapter on possible experimental realization

    Absence of backscattering at integrable impurities in one-dimensional quantum many-body systems

    Full text link
    We study interacting one dimensional (1D) quantum lattice gases with integrable impurities. These model Hamiltonians can be derived using the quantum inverse scattering method for inhomogeneous models and are by construction integrable. Absence of backscattering at the impurities is shown to be the characteristic feature of these disordered systems. The value of the effective carrier charge and the Sutherland-Shastry relation are derived for the half-filled XXX model and are shown to be independent of the impurity concentration and strength. For the half-filled XXZ model we show that there is no enhancement of the persistent currents for repulsive interactions. For attractive interactions we identify a crossover regime beyond which enhancement of the currents is observed.Comment: 14 RevTeX 3.0 pages with 1 PS-figure include

    Dynamics of the Born-Infeld dyons

    Get PDF
    The approach to the dynamics of a charged particle in the Born-Infeld nonlinear electrodynamics developed in [Phys. Lett. A 240 (1998) 8] is generalized to include a Born-Infeld dyon. Both Hamiltonian and Lagrangian structures of many dyons interacting with nonlinear electromagnetism are constructed. All results are manifestly duality invariant.Comment: 11 pages, LATE

    Adiabatic Ground-State Properties of Spin Chains with Twisted Boundary Conditions

    Full text link
    We study the Heisenberg spin chain with twisted boundary conditions, focusing on the adiabatic flow of the energy spectrum as a function of the twist angle. In terms of effective field theory for the nearest-neighbor model, we show that the period 2 (in unit 2π2\pi) obtained by Sutherland and Shastry arises from irrelevant perturbations around the massless fixed point, and that this period may be rather general for one-dimensional interacting lattice models at half filling. In contrast, the period for the Haldane-Shastry spin model with 1/r21/r^2 interaction has a different and unique origin for the period, namely, it reflects fractional statistics in Haldane's sense.Comment: 6 pages, revtex, 3 figures available on request, to appear in J. Phys. Soc. Jp

    Multifractal analysis of the metal-insulator transition in anisotropic systems

    Full text link
    We study the Anderson model of localization with anisotropic hopping in three dimensions for weakly coupled chains and weakly coupled planes. The eigenstates of the Hamiltonian, as computed by Lanczos diagonalization for systems of sizes up to 48348^3, show multifractal behavior at the metal-insulator transition even for strong anisotropy. The critical disorder strength WcW_c determined from the system size dependence of the singularity spectra is in a reasonable agreement with a recent study using transfer matrix methods. But the respective spectrum at WcW_c deviates from the ``characteristic spectrum'' determined for the isotropic system. This indicates a quantitative difference of the multifractal properties of states of the anisotropic as compared to the isotropic system. Further, we calculate the Kubo conductivity for given anisotropies by exact diagonalization. Already for small system sizes of only 12312^3 sites we observe a rapidly decreasing conductivity in the directions with reduced hopping if the coupling becomes weaker.Comment: 25 RevTeX pages with 10 PS-figures include

    Effects of Scale-Free Disorder on the Anderson Metal-Insulator Transition

    Full text link
    We investigate the three-dimensional Anderson model of localization via a modified transfer-matrix method in the presence of scale-free diagonal disorder characterized by a disorder correlation function g(r)g(r) decaying asymptotically as rαr^{-\alpha}. We study the dependence of the localization-length exponent ν\nu on the correlation-strength exponent α\alpha. % For fixed disorder WW, there is a critical αc\alpha_{\rm c}, such that for α<αc\alpha < \alpha_{\rm c}, ν=2/α\nu=2/\alpha and for α>αc\alpha > \alpha_{\rm c}, ν\nu remains that of the uncorrelated system in accordance with the extended Harris criterion. At the band center, ν\nu is independent of α\alpha but equal to that of the uncorrelated system. The physical mechanisms leading to this different behavior are discussed.Comment: submitted to Phys. Rev. Let

    Surface functionalization of biomedical Ti-6Al-7Nb alloy by liquid metal dealloying

    Get PDF
    Surface functionalization is an effective approach to change the surface properties of a material to achieve a specific goal such as improving the biocompatibility of the material. Here, the surface of the commercial biomedical Ti-6Al-7Nb alloy was functionalized through synthesizing of a porous surface layer by liquid metal dealloying (LMD). During LMD, the Ti-6Al-7Nb alloy is immersed in liquid magnesium (Mg) and both materials react with each other. Particularly, aluminum (Al) is selectively dissolved from the Ti-6Al-7Nb alloy into liquid Mg while titanium (Ti) and niobium (Nb) diffuse along the metal/liquid interface to form a porous structure. We demonstrate that the porous surface layer in the Ti-6Al-7Nb alloy can be successfully tailored by LMD. Furthermore, the concentration of harmful Al in this porous layer is reduced by about 48% (from 5.62 ± 0.11 wt.% to 2.95 ± 0.05 wt.%) after 30 min of dealloying at 1150 K. The properties of the porous layer (e.g., layer thickness) can be tuned by varying the dealloying conditions. In-vitro tests suggest improved bone formation on the functionalized porous surface of the Ti-6Al-7Nb alloy. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.European Research Council, ERCTohoku UniversityMinistry of Science and Higher Education of the Russian FederationNanjing University of Science and Technology, NUST: K2-2020-020MA 3333/13-1Supervision, I.V.O., R.W.-R., L.Z., L.M., J.E. and H.K.; Validation, I.V.O., S.-H.J., and B.L.; Writing – original draft, I.V.O. and B.L.; Writing – review & editing, all. All authors have read and agreed to the published version Funding: The financial support was provided by the German Science Foundation under the Leibniz Program of the manuscript. (Grant MA 3333/13-1), by the European Research Council (ERC) under the ERC Advanced Grant INTELHYB (grant Funding: The financial support was provided by the German Science Foundation under the Leibniz Program Ministry of Science and Higher Education of the Russian Federation, in the framework of the Increase Competitiveness (Grant MA 3333/13-1), by the European Research Council (ERC) under the ERC Advanced Grant INTELHYB Program of NUST «MISiS» (grant number K2-2020-020). I.V.O. is grateful for the financial support provided by the International Collaboration Center, Institute for Materials Research (ICC-IMR), Tohoku University, Japan. 02.A03.21.0006), and the Ministry of Science and Higher Education of the Russian Federation, in the framework Conflicts of Interest: The authors declare no conflict of interest. of the Increase Competitiveness Program of NUST «MISiS» (grant number K2-2020-020). I.V.O. is grateful for the financial support provided by the International Collaboration Center, Institute for Materials Research (ICC-IMR), Tohoku University, Japan
    corecore