14 research outputs found

    Optimizing ethanol yield in Saccharomyces cerevisiae fermentations by engineering redox metabolism

    No full text
    Mankind’s energy requirements, which are currently mainly covered by the combustion of fossil fuels, have been steadily increasing in the past half century. While fossil fuels have a high energy content, their use results in significant emissions of greenhouse gases (mainly CO2, methane and nitrous oxide). As the industrialization of developing nations continues, the requirement for a paradigm shift is becoming increasingly evident. Microbial fermentation can provide an alternative by enabling the sustainable production of transport fuels that combine a lower carbon footprint with compatibility with current internal combustion engine technology. Bioethanol is, by volume, the biofuel with the highest annual production (ca. 100 billion liters in 2016). Current ‘first generation’ industrial bioethanol production processes are mainly based on fermentation of hydrolysed corn starch or sugar-cane sucrose by the budding yeast Saccharomyces cerevisiae and capitalize on the naturally high sugar-uptake rates and ethanol yield of this microorganism. The first full-scale ‘second generation’ ethanol production plants that are now coming on line use lignocellulosic hydrolysates, derived from agricultural ‘’waste’’ such as corn stover or wheat straw, as feedstocks. Second-generation bioethanol production can have a smaller carbon footprint than first-generation processes. Moreover, it uses feedstocks that are not a part of the human food chain. However, yeast-based second-generation bioethanol production poses multiple challenges for scientists. Lignocellulosic hydrolysates contain significant amounts of pentose sugars (mainly Dxylose and L-arabinose) which are not naturally fermentable by S. cerevisiae. Further, during biomass pretreatment, inhibitors of yeast performance (phenolics, aldehydes and organic acids) are released into the hydrolysates. To mitigate the negative effects of these inhibitors, yeast strains used in second-generation bioethanol production processes need to maintain high rates of sugar fermentation, both for hexoses and for pentoses. In both first- and second-generation bioethanol production, the price of the hydrolysed feedstock represents the single largest factor in production 2 costs. Therefore, in an industry that generally operates at low profit margins, maximization of the ethanol yield on fermentable sugars is of paramount importance
BT/Industrial Microbiolog

    Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae

    No full text
    Background: Glycerol, whose formation contributes to cellular redox balancing and osmoregulation in Saccharomyces cerevisiae, is an important by-product of yeast-based bioethanol production. Replacing the glycerol pathway by an engineered pathway for NAD+-dependent acetate reduction has been shown to improve ethanol yields and contribute to detoxification of acetate-containing media. However, the osmosensitivity of glycerol non-producing strains limits their applicability in high-osmolarity industrial processes. This study explores engineering strategies for minimizing glycerol production by acetate-reducing strains, while retaining osmotolerance. Results: GPD2 encodes one of two S. cerevisiae isoenzymes of NAD+-dependent glycerol-3-phosphate dehydrogenase (G3PDH). Its deletion in an acetate-reducing strain yielded a fourfold lower glycerol production in anaerobic, low-osmolarity cultures but hardly affected glycerol production at high osmolarity. Replacement of both native G3PDHs by an archaeal NADP+-preferring enzyme, combined with deletion of ALD6, yielded an acetate-reducing strain the phenotype of which resembled that of a glycerol-negative gpd1Δ gpd2Δ strain in low-osmolarity cultures. This strain grew anaerobically at high osmolarity (1 mol L-1 glucose), while consuming acetate and producing virtually no extracellular glycerol. Its ethanol yield in high-osmolarity cultures was 13% higher than that of an acetate-reducing strain expressing the native glycerol pathway. Conclusions: Deletion of GPD2 provides an attractive strategy for improving product yields of acetate-reducing S. cerevisiae strains in low, but not in high-osmolarity media. Replacement of the native yeast G3PDHs by a heterologous NADP+-preferring enzyme, combined with deletion of ALD6, virtually eliminated glycerol production in high-osmolarity cultures while enabling efficient reduction of acetate to ethanol. After further optimization of growth kinetics, this strategy for uncoupling the roles of glycerol formation in redox homeostasis and osmotolerance can be applicable for improving performance of industrial strains in high-gravity acetate-containing processes.BT/Industrial Microbiolog

    Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae

    No full text
    Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose–xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83G673T allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L−1 glucose and 10 g L−1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.BT/Industrial MicrobiologyBT/Biotechnolog

    Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield

    No full text
    Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wild-type S. cerevisiae require formation of glycerol to maintain the intracellular NADH/NAD+ balance. Previously, functional expression of the Calvin-cycle enzymes ribulose-1,5-bisphosphate carboxylase (RuBisCO) and phosphoribulokinase (PRK) in S. cerevisiae was shown to enable reoxidation of NADH with CO2 as electron acceptor. In slow-growing cultures, this engineering strategy strongly decreased the glycerol yield, while increasing the ethanol yield on sugar. The present study explores engineering strategies to improve rates of growth and alcoholic fermentation in yeast strains that functionally express RuBisCO and PRK, while maximizing the positive impact on the ethanol yield. Results: Multi-copy integration of a bacterial-RuBisCO expression cassette was combined with expression of the Escherichia coli GroEL/GroES chaperones and expression of PRK from the anaerobically inducible DAN1 promoter. In anaerobic, glucose-grown bioreactor batch cultures, the resulting S. cerevisiae strain showed a 31% lower glycerol yield and a 31% lower specific growth rate than a non-engineered reference strain. Growth of the engineered strain in anaerobic, glucose-limited chemostat cultures revealed a negative correlation between its specific growth rate and the contribution of the Calvin-cycle enzymes to redox homeostasis. Additional deletion of GPD2, which encodes an isoenzyme of NAD+-dependent glycerol-3-phosphate dehydrogenase, combined with overexpression of the structural genes for enzymes of the non-oxidative pentose-phosphate pathway, yielded a CO2-reducing strain that grew at the same rate as a non-engineered reference strain in anaerobic bioreactor batch cultures, while exhibiting a 86% lower glycerol yield and a 15% higher ethanol yield. Conclusions: The metabolic engineering strategy presented here enables an almost complete elimination of glycerol production in anaerobic, glucose-grown batch cultures of S. cerevisiae, with an associated increase in ethanol yield, while retaining near wild-type growth rates and a capacity for glycerol formation under osmotic stress. Using current genome-editing techniques, the required genetic modifications can be introduced in one or a few transformations. Evaluation of this concept in industrial strains and conditions is therefore a realistic next step towards its implementation for improving the efficiency of first- and second-generation bioethanol production.</p

    Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6

    No full text
    Background: Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. Results: Replacement of the native NADP+-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD+-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15 % increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP+-dependent acetaldehyde dehydrogenase, led to a 39 % increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44 % increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13 % increase in the ethanol yield on glucose. Conclusions: The combination of NAD+-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor specificity of the oxidative branch of the pentose-phosphate pathway in S. cerevisiae can also be used to increase glycerol production in wine fermentation and to improve NADH generation and/or generation of precursors derived from the pentose-phosphate pathway in other industrial applications of this yeast.BT/Industrial Microbiolog

    Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield

    No full text
    Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wild-type S. cerevisiae require formation of glycerol to maintain the intracellular NADH/NAD+ balance. Previously, functional expression of the Calvin-cycle enzymes ribulose-1,5-bisphosphate carboxylase (RuBisCO) and phosphoribulokinase (PRK) in S. cerevisiae was shown to enable reoxidation of NADH with CO2 as electron acceptor. In slow-growing cultures, this engineering strategy strongly decreased the glycerol yield, while increasing the ethanol yield on sugar. The present study explores engineering strategies to improve rates of growth and alcoholic fermentation in yeast strains that functionally express RuBisCO and PRK, while maximizing the positive impact on the ethanol yield. Results: Multi-copy integration of a bacterial-RuBisCO expression cassette was combined with expression of the Escherichia coli GroEL/GroES chaperones and expression of PRK from the anaerobically inducible DAN1 promoter. In anaerobic, glucose-grown bioreactor batch cultures, the resulting S. cerevisiae strain showed a 31% lower glycerol yield and a 31% lower specific growth rate than a non-engineered reference strain. Growth of the engineered strain in anaerobic, glucose-limited chemostat cultures revealed a negative correlation between its specific growth rate and the contribution of the Calvin-cycle enzymes to redox homeostasis. Additional deletion of GPD2, which encodes an isoenzyme of NAD+-dependent glycerol-3-phosphate dehydrogenase, combined with overexpression of the structural genes for enzymes of the non-oxidative pentose-phosphate pathway, yielded a CO2-reducing strain that grew at the same rate as a non-engineered reference strain in anaerobic bioreactor batch cultures, while exhibiting a 86% lower glycerol yield and a 15% higher ethanol yield. Conclusions: The metabolic engineering strategy presented here enables an almost complete elimination of glycerol production in anaerobic, glucose-grown batch cultures of S. cerevisiae, with an associated increase in ethanol yield, while retaining near wild-type growth rates and a capacity for glycerol formation under osmotic stress. Using current genome-editing techniques, the required genetic modifications can be introduced in one or a few transformations. Evaluation of this concept in industrial strains and conditions is therefore a realistic next step towards its implementation for improving the efficiency of first- and second-generation bioethanol production.BT/Industrial MicrobiologyApplied Science

    Saccharomyces cerevisiae strains tor second-generation ethanol production: from academie exploration to industrial implementation

    No full text
    The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.BT/Industrial Microbiolog
    corecore