359 research outputs found

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome

    Measurement of Time-Dependent CP-Violating Asymmetries in B0 --> phi Ks0, K+ K- Ks0, and eta' Ks0 Decays

    Full text link
    We present an improved measurement of CP-violation parameters in B0 --> phi Ks0, K+ K- Ks0, and eta' Ks0 decays based on a 140 fb-1 data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB energy-asymmetric e+e- collider. One neutral B meson is fully reconstructed in one of the specified decay channels, and the flavor of the accompanying B meson is identified from its decay products. CP-violation parameters for each of the three modes are obtained from the asymmetries in the distributions of the proper-time intervals between the two B decays. We find that the observed CP asymmetry in the B0 --> phi Ks0 decay differs from the standard model (SM) expectation by 3.5 standard deviations, while the other cases are consistent with the SM.Comment: 10 pages, 4 postscript figures, submitted to Physical Review Letters, also contributed to the XXI International Symposium on Lepton and Photon Interactions at High Energies, Aug 11-16, 2003, Fermilab, Illinois US

    Evidence for B0->pi0pi0

    Full text link
    We report evidence for the decay B0->pi0pi0. The analysis is based on a data sample of 152million BBbar pairs collected at the Upsilon(4s) resonance with the Belle detector at the KEKB e+e- storage ring. We find 25.6+9.3/-8.4(stat)+1.6/-1.4(syst) B0->pi0pi0 signal events with a significance of 3.4 standard deviations. We measure the branching fraction to be (1.7+-0.6(stat)+-0.2(syst))*10^{-6}.Comment: Submitted to PR

    An Upper Bound on the Decay tau -> mu gamma from Belle

    Full text link
    We have performed a search for the lepton-flavor-violating decay tau -> mu gamma using a data sample of 86.3fb^{-1} accumulated by the Belle detector at KEK. No evidence for a signal is seen, and we set an upper limit for the branching fraction of B(tau -> mu gamma) < 3.1 x 10^{-7} at the 90% confidence level.Comment: 6 pages, 4 figuresm, submitted to Phys. Rev. Let

    Observation of the DsJ(2317) and DsJ(2457) in B decays

    Get PDF
    We report the first observation of the B --> Dbar DsJ(2317) and B --> Dbar DsJ(2457) decays based on 123.8 10^6 BBar events collected with the Belle detector at KEKB. We observe the DsJ(2317) decay to Ds pi0 and DsJ(2457) decay to the Ds* pi0 and Ds gamma final states. We also set 90% CL upper limits for the decays DsJ(2317) --> Ds* gamma, DsJ(2457) --> Ds* gamma, DsJ(2457) --> Ds pi0 and DsJ(2457) --> Ds pi+ pi-.Comment: 6 pages, 3 figures. A few minor corrections. Replaced by version accepted to publication in Phys. Rev. Let

    Observation of Large CP Violation and Evidence for Direct CP Violation in B0-->pi+pi- Decays

    Full text link
    We report the first observation of CP-violating asymmetries in B0 --> pi+pi- decays based on a 140 fb-1 data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We reconstruct one neutral B meson as a B0 --> pi+pi- CP eigenstate and identify the flavor of the accompanying B meson from its decay products. We apply an unbinned maximum likelihood fit to the distribution of the time intervals between the two B meson decay points. The fit yields the CP-violating asymmetry amplitudes Apipi = +0.58+/-0.15(stat)+/-0.07(syst) and Spipi = -1.00+/-0.21(stat)+/-0.07(syst). We rule out the CP-conserving case, Apipi=Spipi=0, at a level of 5.2 standard deviations. We also find evidence for direct CP violation with a significance at or greater than 3.2 standard deviations for any Spipi value.Comment: 9 pages, 3 figure

    Evidence for Direct CP Violation in B0 -> K+- pi-+ Decays

    Full text link
    We report evidence for direct CP violation in the decay B0 -> K+-pi-+ with 253/fb of data collected with the Belle detector at the KEKB e+e- collider. Using 275 million B B_bar pairs we observe a B -> K+-pi-+ signal with 2140+-53 events. The measured CP violating asymmetry is Acp(K+-pi-+) = -0.101+-0.025 (stat)+-0.005 (syst), corresponding to a significance of 3.9 sigma including systematics. We also search for CP violation in the decays B+- -> K+-pi0 and B+- -> pi+-pi0. The measured CP violating asymmetries are Acp(K+-pi0) = 0.04+-0.05(stat)+-0.02(syst) and Acp(pi+-pi0) = -0.02+-0.10(stat)+-0.01(syst), corresponding to the intervals -0.05 < Acp(K+-pi0) < 0.13 and -0.18<Acp(pi+-pi0)<0.14 at 90% confidence level.Comment: 9 pages, 3 figures. submitted to Physical Review Letter
    corecore