328 research outputs found
The Low End of the Initial Mass Function in Young LMC Clusters: I. The Case of R136
We report the result of a study in which we have used very deep broadband V
and I WFPC2 images of the R136 cluster in the Large Magellanic Cloud from the
HST archive, to sample the luminosity function below the detection limit of 2.8
Mo previously reached. In these new deeper images, we detect stars down to a
limiting magnitude of m_F555W = 24.7 (~ 1 magnitude deeper than previous
works), and identify a population of red stars evenly distributed in the
surrounding of the R136 cluster. A comparison of our color-magnitude diagram
with recentely computed evolutionary tracks indicates that these red objects
are pre-main sequence stars in the mass range 0.6 - 3 Mo. We construct the
initial mass function (IMF) in the 1.35 - 6.5 Mo range and find that, after
correcting for incompleteness, the IMF shows a definite flattening below ~ 2
Mo. We discuss the implications of this result for the R136 cluster and for our
understanding of starburst galaxies formation and evolution in general.Comment: 29 pages, 6 tables, 11 figures included + 3 external files, accepted
for publication by Ap.
The massive star population of the Virgo Cluster galaxy NGC 4535
We analyzed the massive star population of the Virgo Cluster galaxy NGC 4535
using archival Hubble Space Telescope Wide Field Planetary Camera 2 images in
filters F555W and F814W, equivalent to Johnson V and Kron-Cousins I. We
performed high precision point spread function fitting photometry of 24353
sources including 3762 candidate blue supergiants, 841 candidate yellow
supergiants and 370 candidate red supergiants. We estimated the ratio of blue
to red supergiants as a decreasing function of galactocentric radius. Using
Modules for Experiments in Stellar Astrophysics isochrones at solar
metallicity, we defined the luminosity function and estimated the star
formation history of the galaxy over the last 60 Myrs. We conducted a
variability search in the V and I filters using three variability indexes: the
median absolute deviation, the interquartile range and the inverse von-Neumann
ratio. This analysis yielded 120 new variable candidates with absolute
magnitudes ranging from M = 4 to 11 mag. We used the MESA
evolutionary tracks at solar metallicity, to classify the variables based on
their absolute magnitude and their position on the color-magnitude diagram.
Among the new candidate variable sources are eight candidate variable red
supergiants, three candidate variable yellow supergiants and one candidate
luminous blue variable, which we suggest for follow-up observations.Comment: Accepted by A&A, 7 pages, 7 Tables, 53 figure
Infrared composition of the Large Magellanic Cloud
The evolution of galaxies and the history of star formation in the Universe
are among the most important topics in today's astrophysics. Especially, the
role of small, irregular galaxies in the star-formation history of the Universe
is not yet clear. Using the data from the AKARI IRC survey of the Large
Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the
mid- and near-infrared, we have constructed a multiwavelength catalog
containing data from a cross-correlation with a number of other databases at
different wavelengths. We present the separation of different classes of stars
in the LMC in color-color, and color-magnitude, diagrams, and analyze their
contribution to the total LMC flux, related to point sources at different
infrared wavelengths
The Stellar Mass Distribution in the Giant Star Forming Region NGC 346
Deep F555W and F814W Hubble Space Telescope ACS images are the basis for a
study of the present day mass function (PDMF) of NGC346, the largest active
star forming region in the Small Magellanic Cloud (SMC). We find a PDMF slope
of Gamma=-1.43+/-0.18 in the mass range 0.8-60 Mo, in excellent agreement with
the Salpeter Initial Mass Function (IMF) in the solar neighborhood. Caveats on
the conversion of the PDMF to the IMF are discussed. The PDMF slope changes, as
a function of the radial distance from the center of the NGC 346 star cluster,
indicating a segregation of the most massive stars. This segregation is likely
primordial considering the young age (~3 Myr) of NGC346, and its clumpy
structure which suggests that the cluster has likely not had sufficient time to
relax. Comparing our results for NGC346 with those derived for other star
clusters in the SMC and the Milky Way (MW), we conclude that, while the star
formation process might depend on the local cloud conditions, the IMF does not
seem to be affected by general environmental effects such as galaxy type,
metallicity, and dust content.Comment: 26 pages, 7 figures, 1 table, accepted for publication in A
Past and present star formation in the SMC: NGC 346 and its neighborhood
In the quest of understanding how star formation occurs and propagates in the
low metallicity environment of the Small Magellanic Cloud (SMC), we acquired
deep F555W (~V), and F814W (~I) HST/ACS images of the young and massive star
forming region NGC 346. These images and their photometric analysis provide us
with a snapshot of the star formation history of the region. We find evidence
for star formation extending from ~10 Gyr in the past until ~150 Myr in the
field of the SMC. The youngest stellar population (~3 +/- 1 Myr) is associated
with the NGC 346 cluster. It includes a rich component of low mass pre-main
sequence stars mainly concentrated in a number of sub-clusters, spatially co-
located with CO clumps previously detected by Rubio et al. (2000). Within our
analysis uncertainties, these sub-clusters appear coeval with each other. The
most massive stars appear concentrated in the central sub-clusters, indicating
possible mass segregation. A number of embedded clusters are also observed.
This finding, combined with the overall wealth of dust and gas, could imply
that star formation is still active. An intermediate age star cluster, BS90,
formed ~4.3 +/-0.1 Gyr ago, is also present in the region. Thus, this region of
the SMC has supported star formation with varying levels of intensity over much
of the cosmic time.Comment: 38 pages, 13 figures, 3 tables; AJ accepte
The initial stellar mass function from random sampling in hierarchical clouds II: statistical fluctuations and a mass dependence for starbirth positions and times
Observed variations in the slope of the initial stellar mass function are
shown to be consistent with a model in which the protostellar gas is randomly
sampled from hierarchical clouds at a rate proportional to the square root of
the local density. RMS variations in the IMF slope around the Salpeter value
are +/- 0.4 when only 100 stars are observed, and +/- 0.1 when 1000 stars are
observed. The hierarchical-sampling model also reproduces the tendency for
massive stars to form closer to the center of a cloud, at a time somewhat later
than the formation time of the lower mass stars. The assumed density dependence
for the star formation rate is shown to be appropriate for turbulence
compression, magnetic diffusion, gravitational collapse, and clump or
wavepacket coalescence. The low mass flattening in the IMF comes from the
inability of gas to form stars below the thermal Jeans mass at typical
temperatures and pressures. Consideration of heating and cooling processes
indicate why the thermal Jeans mass should be nearly constant in normal
environments, and why it might increase in some starburst regions. The steep
IMF in the extreme field is not explained by the model, but other origins are
suggested.Comment: 21 pages, 8 figures, scheduled for ApJ vol. 515, April 10, 199
A Spectroscopic Survey of WNL Stars in the LMC: General Properties and Binary Status
We report the results of an intense, spectroscopic survey of all 41
late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud
(LMC) observable with ground-based telescopes. This survey concludes the
decade-long effort of the Montr\'eal Massive Star Group to monitor every known
WR star in the Magellanic Clouds except for the 6 crowded WNL stars in R136,
which will be discussed elsewhere. The focus of our survey was to monitor the
so-called WNL stars for radial-velocity (RV) variability in order to identify
the short- to intermediate-period (P \la 200 days) binaries among them. Our
results are in line with results of previous studies of other WR subtypes, and
show that the binary frequency among LMC WNL stars is statistically consistent
with that of WNL stars in the Milky Way. We have identified four previously
unknown binaries, bringing the total number of known WNL binaries in the LMC to
nine. Since it is very likely that none but one of the binaries are classical,
helium-burning WNL stars, but rather superluminous, hence extremely massive,
hydrogen-burning objects, our study has dramatically increased the number of
known binaries harbouring such objects, and thus paved the way to determine
their masses through model-independent, Keplerian orbits. It is expected that
some of the stars in our binaries will be among the most massive known. With
the binary status of each WR star now known, we also studied the photometric
and X-ray properties of our program stars using archival MACHO photometry as
well as Chandra and ROSAT data. We find that one of our presumably single WNL
stars is among the X-ray brightest WR sources known. We also identify a binary
candidate from its RV variability and X-ray luminosity which harbours the most
luminous WR star known in the Local Group.Comment: 25 pages, 11 figures; accepted for MNRA
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
- …
