869 research outputs found

    Uniform and staggered magnetizations induced by Dzyaloshinskii-Moriya interactions in isolated and coupled spin 1/2 dimers in a magnetic field

    Full text link
    We investigate the interplay of Dzyaloshinskii-Moriya interactions and an external field in spin 1/2 dimers. For isolated dimers and at low field, we derive simple expressions for the staggered and uniform magnetizations which show that the orientation of the uniform magnetization can deviate significantly from that of the external field. In fact, in the limit where the D{\bf D} vector of the Dzyaloshinskii-Moriya interaction is parallel to the external field, the uniform magnetization actually becomes {\it perpendicular} to the field. For larger fields, we show that the staggered magnetization of an isolated dimer has a maximum close to one-half the polarization, with a large maximal value of 0.35gÎĽB0.35 g\mu_B in the limit of very small Dzyaloshinskii-Moriya interaction. We investigate the effect of inter-dimer coupling in the context of ladders with Density Matrix Renormalization Group (DMRG) calculations and show that, as long as the values of the Dzyaloshinskii-Moriya and of the exchange interaction are compatible with respect to the development of a staggered magnetization, the simple picture that emerges for isolated dimers is also valid for weakly coupled dimers with minor modifications. The results are compared with torque measurements on Cu2_{2}(C5_{5}H12_{12}N2_{2})2_{2}Cl4_{4}.Comment: 8 pages, 9 figure

    Coherent matter waves emerging from Mott-insulators

    Full text link
    We study the formation of (quasi-)coherent matter waves emerging from a Mott insulator for strongly interacting bosons on a one-dimensional lattice. It has been shown previously that a quasi-condensate emerges at momentum k=\pi/2a, where a is the lattice constant, in the limit of infinitely strong repulsion (hard-core bosons). Here we show that this phenomenon persists for all values of the repulsive interaction that lead to a Mott insulator at a commensurate filling. The non-equilibrium dynamics of hard-core bosons is treated exactly by means of a Jordan-Wigner transformation, and the generic case is studied using a time-dependent density matrix renormalization group technique. Different methods for controlling the emerging matter wave are discussed.Comment: 20 pages, 11 figures. Published versio

    The Density Matrix Renormalization Group applied to single-particle Quantum Mechanics

    Full text link
    A simplified version of White's Density Matrix Renormalization Group (DMRG) algorithm has been used to find the ground state of the free particle on a tight-binding lattice. We generalize this algorithm to treat the tight-binding particle in an arbitrary potential and to find excited states. We thereby solve a discretized version of the single-particle Schr\"odinger equation, which we can then take to the continuum limit. This allows us to obtain very accurate results for the lowest energy levels of the quantum harmonic oscillator, anharmonic oscillator and double-well potential. We compare the DMRG results thus obtained with those achieved by other methods.Comment: REVTEX file, 21 pages, 3 Tables, 4 eps Figure

    Quantum criticality of dipolar spin chains

    Full text link
    We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 \propto |h - h_c| and v_k^2 \propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.Comment: 6 pages, 5 figure

    The FFLO state in the one-dimensional attractive Hubbard model and its fingerprint in the spatial noise correlations

    Full text link
    We explore the pairing properties of the one-dimensional attractive Hubbard model in the presence of finite spin polarization. The correlation exponents for the most important fluctuations are determined as a function of the density and the polarization. We find that in a system with spin population imbalance, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type pairing at wavevector Q=|k_{F,\uparrow}-k_{F,\downarrow}| is always dominant and there is no Chandrasekhar-Clogston limit. We then investigate the case of weakly coupled 1D systems and determine the region of stability of the 1D FFLO phase. This picture is corroborated by density-matrix-renormalization-group (DMRG) simulations of the spatial noise correlations in uniform and trapped systems, unambiguously revealing the presence of fermion pairs with nonzero momentum Q. This opens up an interesting possibility for experimental studies of FFLO states.Comment: 8 pages, 4 figure

    Spectral Density of the Two-Impurity Anderson Model

    Full text link
    We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime, we find a quantum phase transition as function of inter-impurity hopping driven by the charge degrees of freedom. For large values of the local Coulomb repulsion, the transition is driven instead by a competition between local and non-local magnetic correlations. We find evidence that, in contrast to the usual phenomenological picture, it seems to be the bare effective exchange interactions which trigger the observed transition.Comment: 18 pages, 6 figures, submitted to J. Phys.:Condens. Matte

    Dynamical Properties of Two Coupled Hubbard Chains at Half-filling

    Full text link
    Using grand canonical Quantum Monte Carlo (QMC) simulations combined with Maximum Entropy analytic continuation, as well as analytical methods, we examine the one- and two-particle dynamical properties of the Hubbard model on two coupled chains at half-filling. The one-particle spectral weight function, A(k,ω)A({\bf k},\omega), undergoes a qualitative change with interchain hopping t⊥t_\perp associated with a transition from a four-band insulator to a two-band insulator. A simple analytical model based on the propagation of exact rung singlet states gives a good description of the features at large t⊥t_\perp. For smaller t⊥t_\perp, A(k,ω)A({\bf k}, \omega) is similar to that of the one-dimensional model, with a coherent band of width the effective antiferromagnetic exchange JJ reasonably well-described by renormalized spin-wave theory. The coherent band rides on a broad background of width several times the parallel hopping integral tt, an incoherent structure similar to that found in calculations on both the one- and two-dimensional models. We also present QMC results for the two-particle spin and charge excitation spectra, and relate their behavior to the rung singlet picture for large t⊥t_\perp and to the results of spin-wave theory for small t⊥t_\perp.Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised version with isotropic t_perp=t data include

    Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies

    Full text link
    We have investigated two-electron bound state formation in a square two-dimensional t-J-U model with hopping anisotropies for zero electron density; these anisotropies are introduced to mimic the hopping energies similar to those expected in stripe-like arrangements of holes and spins found in various transition metal oxides. In this report we provide analytical solutions to this problem, and thus demonstrate that bound-state formation occurs at a critical exchange coupling, J_c, that decreases to zero in the limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be contrasted with J_c/t = 2 for either a one-dimensional chain, or a two-dimensional plane with isotropic hopping. Most importantly, this behaviour is found to be qualitatively similar to that of two electrons on the two-leg ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter result as guidance, we have evaluated the pair correlation function, thus determining that the bound state corresponds to one electron moving along one chain, with the second electron moving along the opposite chain, similar to two electrons confined to move along parallel, neighbouring, metallic stripes. We emphasize that the above results are not restricted to the zero density limit - we have completed an exact diagonalization study of two holes in a 12 X 2 two-leg ladder described by the t-J model and have found that the above-mentioned lowering of the binding energy with hopping anisotropy persists near half filling.Comment: 6 pages, 3 eps figure

    Soliton binding and low-lying singlets in frustrated odd-legged S=1/2 spin tubes

    Full text link
    Motivated by the intriguing properties of the vanadium spin tube Na2V3O7, we show that an effective spin-chirality model similar to that of standard Heisenberg odd-legged S=1/2 spin tubes can be derived for frustrated inter-ring couplings, but with a spin-chirality coupling constant alpha that can be arbitrarily small. Using density matrix renormalization group and analytical arguments, we show that, while spontaneous dimerization is always present, solitons become bound into low-lying singlets as alpha is reduced. Experimental implications for strongly frustrated tubes are discussed.Comment: 4 pages, 4 figure
    • …
    corecore