57 research outputs found

    Synthesis of Regular Polyhexene in Perfluoromethylcyclohexane

    Full text link
    This work was supported by the Russian Science Foundation (Ref. № 18-13-00365)

    Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization

    Get PDF
    Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.

    Transition Metal–(μ-Cl)–Aluminum Bonding in α-Olefin and Diene Chemistry

    No full text
    Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M–(μ-Cl)–Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M–(μ-Cl)–Al bonding in Ziegler–Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M–(μ-Cl)–Al species into catalytic cycles. In the present review, we have compiled data on the formation of M–(μ-Cl)–Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler–Natta processes and beyond

    Antibacterial poly(ε‐cl)/hydroxyapatite electrospun fibers reinforced by poly(ε‐cl)‐b‐poly(ethylene phosphoric acid)

    No full text
    In bone surgery and orthopedics, bioresorbable materials can be helpful in bone repair and countering post‐op infections. Explicit antibacterial activity, osteoinductive and osteoconductive effects are essential to achieving this objective. Nonwoven electrospun (ES) fibers are receiving the close attention of physicians as promising materials for wound dressing and tissue engineering; potentially, in high contrast with dense materials, ES mats hamper regeneration of the bone extracellular matrix to a lesser extent. The use of the compositions of inherently biodegradable polyesters (poly(ε‐caprolactone) PCL, poly(lactoglycolide), etc.), calcium phosphates and antibiotics is highly prospective, but the task of forming ES fibers from such compositions is complicated by the incompatibility of the main organic and inorganic ingredients, polyesters and calcium phosphates. In the present research we report the synthesis of hydroxyapatite (HAp) nanoparticles with uniform morphology, and demonstrate high efficiency of the block copolymer of PCL and poly(ethylene phosphoric acid) (PEPA) as an efficient compatibilizer for PCL/HAp mixtures that are able to form ES fibers with improved mechanical characteristics. The materials obtained in the presence of vancomycin exhibited incremental drug release against Staphylococcus aureus (St. aureus). © 2021, MDPI AG. All rights reserved

    In vitro and in vivo studies of biodegradability and biocompatibility of poly(εcl)-b-poly(etoep)-based films

    No full text
    The control of surface bioadhesive properties of the subcutaneous implants is essential for the development of biosensors and controlled drug release devices. Poly(alkyl ethylene phosphate)-based (co)polymers are structurally versatile, biocompatible and biodegradable, and may be regarded as an alternative to poly(ethylene glycol) (PEG) copolymers in the creation of antiadhesive materials. The present work reports the synthesis of block copolymers of ε-caprolactone (εCL) and 2-ethoxy-1,3,2-dioxaphospholane-2-oxide (ethyl ethylene phosphate, EtOEP) with different content of EtOEP fragments, preparation of polymer films, and the results of the study of the impact of EtOEP/εCL ratio on the hydrophilicity (contact angle of wetting), hydrolytic stability, cytotoxicity, protein and cell adhesion, and cell proliferation using umbilical cord multipotent stem cells. It was found that the increase of EtOEP/εCL ratio results in increase of hydrophilicity of the polymer films with lowering of the protein and cell adhesion. MTT cytotoxicity test showed no significant deviations in toxicity of poly(εCL) and poly(εCL)-b-poly(EtOEP)-based films. The influence of the length of poly(EtOEP)chain in block-copolymers on fibrotic reactions was analyzed using subcutaneous implantation experiments (Wistar line rats), the increase of the width of the fibrous capsule correlated with higher EtOEP/εCL ratio. However, the copolymer-based film with highest content of polyphosphate had been subjected to faster degradation with a formation of developed contact surface of poly(εCL). The rate of the degradation of polyphosphate in vivo was significantly higher than the rate of the degradation of polyphosphate in vitro, which only confirms an objective value of in vivo experiments in the development of polymer materials for biomedical applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    corecore